【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結論正確的個數(shù)是( 。
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四邊形ECFG=2S△BGE .
A.4
B.3
C.2
D.1
【答案】B
【解析】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,
∴CF=BE,
在△ABE和△BCF中,
,
∴Rt△ABE≌Rt△BCF(SAS),
∴∠BAE=∠CBF,AE=BF,故①正確;
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF,故②正確;
根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
令PF=k(k>0),則PB=2k
在Rt△BPQ中,設QB=x,
∴x2=(x﹣k)2+4k2 ,
∴x= ,
∴sin=∠BQP= = ,故③正確;
∵∠BGE=∠BCF,∠GBE=∠CBF,
∴△BGE∽△BCF,
∵BE= BC,BF= BC,
∴BE:BF=1: ,
∴△BGE的面積:△BCF的面積=1:5,
∴S四邊形ECFG=4S△BGE , 故④錯誤.
故選:B.
首先證明△ABE≌△BCF,再利用角的關系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對折,得到△BPF,利用角的關系求出QF=QB,解出BP,QB,根據(jù)正弦的定義即可求解;根據(jù)AA可證△BGE與△BCF相似,進一步得到相似比,再根據(jù)相似三角形的性質即可求解.本題主要考查了四邊形的綜合題,涉及正方形的性質、全等三角形的判定和性質、相似三角形的判定和性質以及折疊的性質的知識點,解決的關鍵是明確三角形翻轉后邊的大小不變,找準對應邊,角的關系求解.
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y= (x-1)2-3 .
(1)寫出拋物線的開口方向、對稱軸;
(2)函數(shù)y有最大值還是最小值?并求出這個最大(。┲;
(3)設拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,P是CD上一點,且AP和BP分別平分∠DAB和∠CBA.
(1)求∠APB的度數(shù);
(2)如果AD=5 cm,AP=8 cm,求△APB的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形的頂點A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次変換,如果這樣連續(xù)經(jīng)過2016次變換后,等邊△ABC的頂點C的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個小正方形的邊長為 1 個單位,每個小方格的頂點叫格點.
(1)畫出△ABC 的 AB 邊上的中線 CD;
(2)畫出△ABC 向右平移 4 個單位后得到的△A1B1C1;
(3)圖中 AC 與 A1C1 的關系是: ;
(4)圖中△ABC 的面積是 ;
(5)能使△BCE 面積為 3 的格點 E 有 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,∠AOB=90°,點C在射線OA上,CD∥OE.
(1)如圖1,若∠OCD=120°,求∠BOE的度數(shù);
(2)把“∠AOB=90°”改為“∠AOB=120°”,射線OE沿射線OB平移,得O′E,其他條件不變,(如圖2所示),探究∠OCD、∠BO′E的數(shù)量關系;
(3)在(2)的條件下,作PO′⊥OB垂足為O′,與∠OCD的平分線CP交于點P,若∠BO′E=α,請用含α的式子表示∠CPO′(請直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)前往B城,在整個行程中,兩車離開A城的距離y與t的對應關系如圖所示:
(1)A、B兩城之間距離是多少千米?
(2)求乙車出發(fā)多長時間追上甲車?
(3)直接寫出甲車出發(fā)多長時間,兩車相距20千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,FA⊥AE,交CB延長線于點F,則EF的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選最關注的一個),根據(jù)調查結果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).
(3)如果要在這5個主題中任選兩個進行調查,根據(jù)(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com