【題目】如圖,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y軸于點(diǎn)C,點(diǎn)P是x軸上一點(diǎn),⊙P經(jīng)過點(diǎn)A、C,與x軸交于點(diǎn)D,過點(diǎn)C作CE⊥AB,垂足為E,EC的延長線交x軸于點(diǎn)F.
(1)求證:EF為⊙P的切線;
(2)求⊙P的半徑.
【答案】(1)詳見解析;(2)5
【解析】
(1)連接CP,根據(jù)等腰三角形的性質(zhì)得到∠PAC=∠PCA,由角平分線的定義得到∠PAC=∠EAC,等量代換得到∠PCA=∠EAC,推出PC∥AE,于是得到結(jié)論;
(2)根據(jù)角平分線的定義得到∠BAC=∠OAC,根據(jù)等腰三角形的性質(zhì)得到∠PCA=∠PAC,等量代換得到∠BAC=∠ACP,推出PC∥AB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
(1)證明:連接CP, ∵AP=CP,
∴∠PAC=∠PCA,
∵AC平分∠OAB,
∴∠PAC=∠EAC,
∴∠PCA=∠EAC,
∴PC∥AE,
∵CE⊥AB,
∴CP⊥EF,
即EF是⊙P的切線;
(2)由(1)知,PC∥AB,
∴△OPC∽△OAB,
∴
∵A(-8,0),B(0,),
∴OA=8,OB=,
∴AB=,
∴ ,
∴PC=5,
∴⊙P的半徑為5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=-x2+(n-1)x+3的圖像與y軸交于點(diǎn)A,與x軸的負(fù)半軸交于點(diǎn)B(-2,0)
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P是這個二次函數(shù)圖像在第二象限內(nèi)的一線,過點(diǎn)P作y軸的垂線與線段AB交于點(diǎn)C,求線段PC長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“臍橙結(jié)碩果,香飄引客來”,贛南臍橙以其“外表光潔美觀,肉質(zhì)脆嫩,風(fēng)味濃甜芳香”的特點(diǎn)飲譽(yù)中外.現(xiàn)欲將一批臍橙運(yùn)往外地銷售,若用2輛A型車和1輛B型車載滿臍橙一次可運(yùn)走10噸;用1輛A型車和2輛B型車載滿臍橙一次可運(yùn)走11噸.現(xiàn)有臍橙31噸,計劃同時租用A型車a輛,B型車b輛,一次運(yùn)完,且恰好每輛車都載滿臍橙.
根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都載滿臍橙一次可分別運(yùn)送多少噸?
(2)請你幫該物流公司設(shè)計租車方案;
(3)若1輛A型車需租金100元/次,1輛B型車需租金120元/次.請選出費(fèi)用最少的租車方案,并求出最少租車費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
正方形內(nèi)“奇妙點(diǎn)”及性質(zhì)探究
定義:如圖1,在正方形中,以為直徑作半圓,以為圓心,為半徑作,與半圓交于點(diǎn).我們稱點(diǎn)為正方形的一個“奇妙點(diǎn)”.過奇妙點(diǎn)的多條線段與正方形無論是位置關(guān)系還是數(shù)量關(guān)系,都具有不少優(yōu)美的性質(zhì)值得探究.
性質(zhì)探究:如圖2,連接并延長交于點(diǎn),則為半圓的切線.
證明:連接.
由作圖可知,,
又.
,∴是半圓的切線.
問題解決:
(1)如圖3,在圖2的基礎(chǔ)上,連接.請判斷和的數(shù)量關(guān)系,并說明理由;
(2)在(1)的條件下,請直接寫出線段之間的數(shù)量關(guān)系;
(3)如圖4,已知點(diǎn)為正方形的一個“奇妙點(diǎn)”,點(diǎn)為的中點(diǎn),連接并延長交于點(diǎn),連接并延長交于點(diǎn),請寫出和的數(shù)量關(guān)系,并說明理由;
(4)如圖5,已知點(diǎn)為正方形的四個“奇妙點(diǎn)”.連接,恰好得到一個特殊的“趙爽弦圖”.請根據(jù)圖形,探究并直接寫出一個不全等的幾何圖形面積之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象分別位于第二、第四象限,、兩點(diǎn)在該圖象上,下列命題:①過點(diǎn)作軸,為垂足,連接.若的面積為3,則;②若,則;③若,則其中真命題個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,為中點(diǎn),以為邊作正方形,邊交于點(diǎn).在邊上取點(diǎn)使,作交于點(diǎn),交于點(diǎn).
(1)請你利用該圖解釋平方差公式:.
(2)現(xiàn)以點(diǎn)為圓心,為半徑作圓弧交線段于點(diǎn),連接.若點(diǎn)在同一直線上,求的值?
(3)記的面積為,圖中四邊形的面積為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某學(xué)校為了了解九年級學(xué)生的體能情況,抽取了部分學(xué)生進(jìn)行了體能測試,學(xué)生的測試成績分四類:A:優(yōu)秀;B:良好;C:合格;D不合格,將抽測學(xué)生的成績繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù);
(2)成績?yōu)?/span>C的女生有______人,成績?yōu)?/span>D的男生有______人;
(3)扇形統(tǒng)計圖中成績?yōu)?/span>D的學(xué)生所對應(yīng)的扇形的圓心角度數(shù)為______;
(4)補(bǔ)全條形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx與反比例函數(shù)(x>0)的圖象交于Q點(diǎn),點(diǎn)B(3,4)在反比例函數(shù)的圖象上,過點(diǎn)B作PB∥x軸交OQ于點(diǎn)P,過點(diǎn)P作PA∥y軸交反比例函數(shù)圖象于點(diǎn)A.
(1)若點(diǎn)A的縱坐標(biāo)為,求反比例函數(shù)及直線OP的解析式;
(2)連接OB,在(1)的條件下,求sin∠BOP的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com