【題目】矩形ABCD,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC滿足PBE∽△DBC,APD是等腰三角形,PE的長(zhǎng)為數(shù)___________.

【答案】31.2

【解析】PBE∽△DBC,可得∠PBE=DBC,繼而可確定點(diǎn)PBD上,然后再根據(jù)APD是等腰三角形,分DP=DA、AP=DP兩種情況進(jìn)行討論即可得.

∵四邊形ABCD是矩形,∴∠BAD=C=90°,CD=AB=6,BD=10,

PBE∽△DBC,

∴∠PBE=DBC,∴點(diǎn)PBD上,

如圖1,當(dāng)DP=DA=8時(shí),BP=2,

PBE∽△DBC,

PE:CD=PB:DB=2:10,

PE:6=2:10,

PE=1.2;

如圖2,當(dāng)AP=DP時(shí),此時(shí)PBD中點(diǎn),

PBE∽△DBC,

PE:CD=PB:DB=1:2,

PE:6=1:2,

PE=3;

綜上,PE的長(zhǎng)為1.23,

故答案為:1.23.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)民體質(zhì)監(jiān)測(cè)中心等機(jī)構(gòu)開展了青少年形體測(cè)評(píng).專家組隨機(jī)抽查了某市若干名初中學(xué)生坐姿、站姿、走姿的好壞情況.我們對(duì)專家的測(cè)評(píng)數(shù)據(jù)作了適當(dāng)處理(如果一個(gè)學(xué)生有一種以上不良姿勢(shì),我們以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中所給信息解答下列問題:

1】請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

2】在這次形體測(cè)評(píng)中,一共抽查了 名學(xué)生,如果全市有10萬名初中生,那么全市初中生中,三姿良好的學(xué)生約有 人;

3】根據(jù)統(tǒng)計(jì)結(jié)果,請(qǐng)你簡(jiǎn)單談?wù)勛约旱目捶?/span>.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=3x2+36x+81.

(1)寫出它的頂點(diǎn)坐標(biāo);

(2)當(dāng)x取何值時(shí),y隨x的增大而增大;

(3)求出圖象與x軸的交點(diǎn)坐標(biāo);

(4)當(dāng)x取何值時(shí),y有最小值,并求出最小值;

(5)當(dāng)x取何值時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABCD,點(diǎn) E 為射線 FG 上一點(diǎn).

(1)如圖 1,若EAF=30°,EDG=40°,則AED= °;

(2)如圖 2,當(dāng)點(diǎn) E FG 延長(zhǎng)線上時(shí),此時(shí) CD AE 交于點(diǎn) H,則∠AED、EAF、EDG之間滿足怎樣的關(guān)系,請(qǐng)說明你的結(jié)論;

(3)如圖 3,DI 平分∠EDC,交 AE 于點(diǎn) K,交 AI 于點(diǎn) I,且∠EAI:BAI=1:2,AED=22°,I=20°,求EKD 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線都與直線l垂直,垂足分別為M,N,MN=1,正方形ABCD的邊長(zhǎng)為,對(duì)角線AC在直線l,且點(diǎn)C位于點(diǎn)M,將正方形ABCD沿l向右平移,直到點(diǎn)A與點(diǎn)N重合為止,記點(diǎn)C平移的距離為x,正方形ABCD的邊位于之間部分的長(zhǎng)度和為y,y關(guān)于x的函數(shù)圖象大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)完《平面直角坐標(biāo)系》和《一次函數(shù)》這兩章后,老師布置了這樣一道思考題:已知:如圖,在長(zhǎng)方形中,,點(diǎn)的中點(diǎn),相交于點(diǎn).求的面積.小明同學(xué)應(yīng)用所學(xué)知識(shí),順利地解決了此題,他的思路是這樣的:以所在的直線為軸,以所在的直線為軸建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,寫出圖中一些點(diǎn)坐標(biāo).根據(jù)一次函數(shù)的知識(shí)求出點(diǎn)的坐標(biāo),從而求得的面積.請(qǐng)你按照小明的思路解決這道思考題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為準(zhǔn)備聯(lián)合韻律操表演,甲、乙兩校共100人準(zhǔn)備統(tǒng)一購(gòu)買服裝(一人買一套)參加表演,其中甲校人數(shù)多于乙校人數(shù),下面是服裝廠給出的演出服裝的價(jià)格表:

如果兩所學(xué)校分別單獨(dú)購(gòu)買服裝,一共應(yīng)付5710元.

1)如果甲、乙兩校聯(lián)合起來購(gòu)買服裝,那么比各自購(gòu)買服裝共可以節(jié)省多少錢?

2)甲、乙兩校各有多少學(xué)生準(zhǔn)備參加表演?

3)如果甲校有9名同學(xué)抽調(diào)去參加迎奧運(yùn)書法比賽不能參加演出,那么你有幾種購(gòu)買方案,通過比較,你該如何購(gòu)買服裝才能最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn) A(4,0),點(diǎn) B y 軸正半軸上一點(diǎn),如圖 1,以 AB 為直角邊作等腰直角三角形 ABC ABC 90

1)若 AC 6,求點(diǎn)B 的坐標(biāo);

2)當(dāng)點(diǎn)B 坐標(biāo)為(01)時(shí),求點(diǎn)C 的坐標(biāo);

3)如圖 2,以 OB 為直角邊作等腰直角△OBD,點(diǎn)D在第一象限,連接CDy 軸于點(diǎn)E.在點(diǎn) B 運(yùn)動(dòng)的過程中,BE 的長(zhǎng)是否發(fā)生變化?若不變,求出 BE 的長(zhǎng);若變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點(diǎn)C是直徑AB延長(zhǎng)線上一點(diǎn),過點(diǎn)C作⊙O的切線,切點(diǎn)為D,連結(jié)BD.

(1)求證:∠A=∠BDC;

(2)若CM平分∠ACD,且分別交AD、BD于點(diǎn)M、N,當(dāng)DM=1時(shí),求MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案