【題目】如圖,從A地到B地的公路需經(jīng)過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.
(1)求改直的公路AB的長;
(2)問公路改直后比原來縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

【答案】
(1)解:作CH⊥AB于H.

在Rt△ACH中,CH=ACsin∠CAB=ACsin25°≈10×0.42=4.2(千米),

AH=ACcos∠CAB=ACcos25°≈10×0.91=9.1(千米),

在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),

∴AB=AH+BH=9.1+5.6=14.7(千米).

故改直的公路AB的長14.7千米


(2)解:在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),

則AC+BC﹣AB=10+7﹣14.7=2.3(千米).

答:公路改直后比原來縮短了2.3千米


【解析】(1)作CH⊥AB于H.在Rt△ACH中,根據(jù)三角函數(shù)求得CH,AH,在Rt△BCH中,根據(jù)三角函數(shù)求得BH,再根據(jù)AB=AH+BH即可求解;(2)在Rt△BCH中,根據(jù)三角函數(shù)求得BC,再根據(jù)AC+BC﹣AB列式計(jì)算即可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸正半軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過該菱形對角線的交點(diǎn)A,且與邊BC交于點(diǎn)F.若點(diǎn)D的坐標(biāo)為(6,8),則點(diǎn)F的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某翼裝飛行員從離水平地面高AC=500m的A處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達(dá)D點(diǎn),然后打開降落傘以75°的俯角降落到地面上的B點(diǎn).求他飛行的水平距離BC(結(jié)果精確到1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,則弦BC的弦心距等于(
A.
B.
C.4
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】提出問題:

(1)如圖1,在正方形ABCD中,點(diǎn)E,H分別在BC,AB上,若AE⊥DH于點(diǎn)O,求證:AE=DH;
類比探究:
(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線段EF與HG的數(shù)量關(guān)系,并說明理由;
綜合運(yùn)用:
(3)在(2)問條件下,HF∥GE,如圖3所示,已知BE=EC=2,EO=2FO,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】木匠黃師傅用長AB=3,寬BC=2的矩形木板做一個盡可能大的圓形桌面,他設(shè)計(jì)了四種方案:
方案一:直接鋸一個半徑最大的圓;
方案二:圓心O1、O2分別在CD、AB上,半徑分別是O1C、O2A,鋸兩個外切的半圓拼成一個圓;
方案三:沿對角線AC將矩形鋸成兩個三角形,適當(dāng)平移三角形并鋸一個最大的圓;
方案四:鋸一塊小矩形BCEF拼到矩形AFED下面,利用拼成的木板鋸一個盡可能大的圓.

(1)寫出方案一中圓的半徑;
(2)通過計(jì)算說明方案二和方案三中,哪個圓的半徑較大?
(3)在方案四中,設(shè)CE=x(0<x<1),圓的半徑為y.
①求y關(guān)于x的函數(shù)解析式;
②當(dāng)x取何值時圓的半徑最大,最大半徑為多少?并說明四種方案中哪一個圓形桌面的半徑最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)E在CB的延長線上,聯(lián)結(jié)AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)G∥BE且與AE交于點(diǎn)G.
(1)求證:GF=BF.
(2)在BC邊上取點(diǎn)M,使得BM=BE,聯(lián)結(jié)AM交DE于點(diǎn)O.求證:FOED=ODEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平行四邊形ABCD中,點(diǎn)E是CD上一點(diǎn),且DE=2,CE=3,射線AE與射線BC相交于點(diǎn)F;
(1)求 的值;
(2)如果 = = ,求向量 ;(用向量 、 表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解高郵市6000名九年級學(xué)生英語口語考試成績的情況,從中隨機(jī)抽取了部分學(xué)生的成績(滿分30分,得分均為整數(shù)),制成下表:

分?jǐn)?shù)段(x分)

x≤10

11≤x≤15

16≤x≤20

21≤x≤25

26≤x≤30

數(shù)

10

15

35

112

128


(1)本次抽樣調(diào)查共抽取了名學(xué)生;
(2)若用扇形統(tǒng)計(jì)圖表示統(tǒng)計(jì)結(jié)果,則分?jǐn)?shù)段為x≤10的人數(shù)所對應(yīng)扇形的圓心角為°;
(3)學(xué)生英語口語考試成績的眾數(shù)落在11≤x≤15的分?jǐn)?shù)段內(nèi);(填“會”或“不會”)
(4)若將26分以上(含26)定為優(yōu)秀,請估計(jì)該區(qū)九年級考生成績?yōu)閮?yōu)秀的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案