精英家教網 > 初中數學 > 題目詳情

【題目】木匠黃師傅用長AB=3,寬BC=2的矩形木板做一個盡可能大的圓形桌面,他設計了四種方案:
方案一:直接鋸一個半徑最大的圓;
方案二:圓心O1、O2分別在CD、AB上,半徑分別是O1C、O2A,鋸兩個外切的半圓拼成一個圓;
方案三:沿對角線AC將矩形鋸成兩個三角形,適當平移三角形并鋸一個最大的圓;
方案四:鋸一塊小矩形BCEF拼到矩形AFED下面,利用拼成的木板鋸一個盡可能大的圓.

(1)寫出方案一中圓的半徑;
(2)通過計算說明方案二和方案三中,哪個圓的半徑較大?
(3)在方案四中,設CE=x(0<x<1),圓的半徑為y.
①求y關于x的函數解析式;
②當x取何值時圓的半徑最大,最大半徑為多少?并說明四種方案中哪一個圓形桌面的半徑最大.

【答案】
(1)

解:方案一中的最大半徑為1.

分析如下:

因為長方形的長寬分別為3,2,那么直接取圓直徑最大為2,則半徑最大為1


(2)

解:如圖1,方案二中連接O1,O2,過O1作O1E⊥AB于E,方案三中,過點O分別作AB,BF的垂線,交于M,N,此時M,N恰為⊙O與AB,BF的切點.

方案二:

設半徑為r,

在Rt△O1O2E中,

∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO2﹣CO1=3﹣2r,

∴(2r)2=22+(3﹣2r)2,

解得 r=

方案三:

設半徑為r,

在△AOM和△OFN中,

,

∴△AOM∽△OFN,

,

,

解得 r=

比較知,方案三半徑較大


(3)

解:①∵EC=x,

∴新拼圖形水平方向跨度為3﹣x,豎直方向跨度為2+x.

類似(1),所截出圓的直徑最大為3﹣x或2+x較小的.

a.當3﹣x<2+x時,即當1>x> 時,y= (3﹣x);

b.當3﹣x=2+x時,即當x= 時,y= (3﹣ )=

c.當3﹣x>2+x時,即當0<x< 時,y= (2+x).

②當x> 時,y= (3﹣x)< (3﹣ )= ;

當x= 時,y= (3﹣ )= ;

當x< 時,y= (2+x)< (2+ )= ,

∴方案四中,當x= 時,y最大為

∵1< ,

∴方案四時可取的圓桌面積最大


【解析】(1)觀察圖易知,截圓的直徑需不超過長方形長、寬中最短的邊,由已知長寬分別為3,2,那么直接取圓直徑最大為2,則半徑最大為1.(2)方案二、方案三中求圓的半徑是常規(guī)的利用勾股定理或三角形相似中對應邊長成比例等性質解直角三角形求邊長的題目.一般都先設出所求邊長,而后利用關系代入表示其他相關邊長,方案二中可利用△O1O2E為直角三角形,則滿足勾股定理整理方程,方案三可利用△AOM∽△OFN后對應邊成比例整理方程,進而可求r的值.(3)①類似(1)截圓的直徑需不超過長方形長、寬中最短的邊,雖然方案四中新拼的圖象不一定為矩形,但直徑也不得超過橫縱向方向跨度.則選擇最小跨度,取其 ,即為半徑.由EC為x,則新拼圖形水平方向跨度為3﹣x,豎直方向跨度為2+x,則需要先判斷大小,而后分別討論結論.②已有關系表達式,則直接根據不等式性質易得方案四中的最大半徑.另與前三方案比較,即得最終結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.
(1)求證:DE=AB.
(2)以D為圓心,DE為半徑作圓弧交AD于點G.若BF=FC=1,試求 的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把球放在長方體紙盒內,球的一部分露出盒外,其主視圖如圖.⊙O與矩形ABCD的邊BC,AD分別相切和相交(E,F是交點),已知EF=CD=8,則⊙O的半徑為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設備共10臺.已知用90萬元購買A型號的污水處理設備的臺數與用75萬元購買B型號的污水處理設備的臺數相同,每臺設備價格及月處理污水量如下表所示:

污水處理設備

A型

B型

價格(萬元/臺)

m

m﹣3

月處理污水量(噸/臺)

220

180


(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,從A地到B地的公路需經過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.
(1)求改直的公路AB的長;
(2)問公路改直后比原來縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,CD⊥AB于點D,⊙D經過點B,與BC交于點E,與AB交與點F.已知tanA= ,cot∠ABC= ,AD=8.
(1)⊙D的半徑;
(2)CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,點D在邊BC上,∠DAB=∠B,點E在邊AC上,滿足AECD=ADCE.
(1)求證:DE∥AB;
(2)如果點F是DE延長線上一點,且BD是DF和AB的比例中項,聯結AF.求證:DF=AF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是射線CB上的動點,點F是射線CD上一點,且AF⊥AE,射線EF與對角線BD交于點G,與射線AD交于點M;

(1)當點E在線段BC上時,求證:△AEF∽△ABD;
(2)在(1)的條件下,聯結AG,設BE=x,tan∠MAG=y,求y關于x的函數解析式,并寫出x的取值范圍;
(3)當△AGM與△ADF相似時,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小穎媽媽的網店加盟了“小神龍”童裝銷售,有一款童裝的進價為60元/件,售價為100元/件,因為剛加盟,為了增加銷量,準備對大客戶制定如下“促銷優(yōu)惠”方案: 若一次購買數量超過10件,則每增加一件,所有這一款童裝的售價降低1元/件,例如一次購買11件時,這11件的售價都為99元/件,但最低售價為80元/件,一次購買這一款童裝的售價y元/件與購買量x件之間的函數關系如圖.

(1)一次購買20件這款童裝的售價為元/件;圖中n的值為;
(2)設小穎媽媽的網店一次銷售x件所獲利潤為w元,求w與x之間的函數關系式;
(3)小穎通過計算發(fā)現:賣25件可以賺625元,而賣30件只賺600元,為了保證銷量越大利潤就越大,在其他條件不變的情況下,求最低售價應定為多少元/件?

查看答案和解析>>

同步練習冊答案