【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(0, 3)、點(diǎn)C(1, 0),等腰Rt△ACB的頂點(diǎn)B在拋物線上.
(1)求點(diǎn)B的坐標(biāo)及拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P(點(diǎn)B除外),使△ACP是以AC為直角邊的Rt△?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)在拋物線上是否存在點(diǎn)Q(點(diǎn)B除外),使△ACQ是以AC為直角邊的等腰Rt△?若存在直接寫出所有點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【答案】(1)(2)P2(、 P3( (3)不存在.
【解析】試題分析:(1)首先過點(diǎn)B作BD⊥x軸,垂足為D,易證得△BDC≌△COA,即可得BD=OC=1,CD=OA=2,則可求得點(diǎn)B的坐標(biāo);(2)利用待定系數(shù)法即可求得二次函數(shù)的解析式;(3)分別從①以AC為直角邊,點(diǎn)C為直角頂點(diǎn),則延長BC至點(diǎn)P1使得P1C=BC,得到等腰直角三角形ACP1,過點(diǎn)P1作P1M⊥x軸,②若以AC為直角邊,點(diǎn)A為直角頂點(diǎn),則過點(diǎn)A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,過點(diǎn)P2作P2N⊥y軸,③若以AC為直角邊,點(diǎn)A為直角頂點(diǎn),則過點(diǎn)A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,過點(diǎn)P3作P3H⊥y軸,去分析則可求得答案.
試題解析:
(1)過B作BD⊥x軸,則△AOC≌△CDB,
∴B(4,1)
將B(4,1)代入 得:
(2)以C為直角頂點(diǎn)時(shí)P是BC與的交點(diǎn),
BC的解析式為; 解得P1(-1,- )(其中點(diǎn)B舍去)
以A為直角頂點(diǎn)時(shí),過A的直線平行于BC,∴易得解析式為, 與拋物線交點(diǎn):
P2( 、 P3(
(3)不存在
理由:以C為直角頂點(diǎn)時(shí),點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B/(―2,―1)不滿足拋物線解析式
以A為直角頂點(diǎn)時(shí),令AQ1=AC,求得Q1(―3,2) 不滿足拋物線解析式
同理,當(dāng)AQ2=AC時(shí),求得Q2(3,4)不滿足拋物線解析式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn)M表示有理數(shù)﹣3,將點(diǎn)M向右平移2個(gè)單位長度到達(dá)點(diǎn)N,點(diǎn)E到點(diǎn)N的距離為5,則點(diǎn)E表示的有理數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,點(diǎn)D是弧BC的中點(diǎn),連結(jié)CD、AD、OD,給出以下四個(gè)結(jié)論:①∠DOB=∠ADC;②CE=OE;③△ODE∽△ADO;④2CD2=CE·AB.其中正確結(jié)論的序號(hào)是( )
A. ①③ B. ②④ C. ①②③ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2﹣2x﹣1=0,經(jīng)過配方,得到( )
A.(x+1)2=3
B.(x﹣1)2=2
C.(x﹣1)2=3
D.(x﹣2)2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次函數(shù)y=(x﹣1)2+2的圖象,下列說法正確的是( )
A.開口向下
B.頂點(diǎn)坐標(biāo)是(1,2)
C.對(duì)稱軸是x=﹣1
D.有最大值是2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(﹣1)2
(2)[(﹣3a)2+3ab2c]2ab2
(3)(﹣ )100×3101
(4)(2a+b)(b﹣2a)﹣(a﹣3b)2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,小明和小玲玩紙片拼圖游戲,發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些長方形來解釋某些等式.比如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2 .
(1)圖③可以解釋為等式:
(2)要拼出一個(gè)長為a+3b,寬為2a+b的長方形,需要如圖所示的塊,塊,塊.
(3)如圖④,大正方形的邊長為m,小正方形的邊長為n,若用x、y表示四個(gè)矩形的兩邊長(x>y),觀察圖案,指出以下關(guān)系式:(1) (2)x+y=m(3)x2﹣y2=mn(4) 其中正確的有
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動(dòng),在第一秒鐘,它從原點(diǎn)跳動(dòng)到(0,1),然后接著按圖中箭頭所示方向跳動(dòng)[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳動(dòng)一個(gè)單位,那么第24秒時(shí)跳蚤所在位置的坐標(biāo)是( )
A.(0,3)
B.(4,0)
C.(0,4)
D.(4,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進(jìn)度,想在小山的另一側(cè)同時(shí)施工.為了使山的另一側(cè)的開挖點(diǎn)C在AB的延長線上,設(shè)想過C點(diǎn)作直線AB的垂線L,過點(diǎn)B作一直線(在山的旁邊經(jīng)過),與L相交于D點(diǎn),經(jīng)測量∠ABD=135°,BD=800米,求直線L上距離D點(diǎn)多遠(yuǎn)的C處開挖?(結(jié)果保留根號(hào))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com