【題目】如圖,在中,.點(diǎn)是中點(diǎn),點(diǎn)為邊上一點(diǎn),連接,以為邊在的左側(cè)作等邊三角形,連接.
(1)的形狀為______;
(2)隨著點(diǎn)位置的變化,的度數(shù)是否變化?并結(jié)合圖說(shuō)明你的理由;
(3)當(dāng)點(diǎn)落在邊上時(shí),若,請(qǐng)直接寫(xiě)出的長(zhǎng).
【答案】(1)等邊三角形;(2)的度數(shù)不變,理由見(jiàn)解析;(3)2
【解析】
(1)由、,可得出、,結(jié)合點(diǎn)是中點(diǎn),可得出,進(jìn)而即可得出為等邊三角形;
(2)由(1)可得出,根據(jù)可得出,再結(jié)合、即可得出,根據(jù)全等三角形的性質(zhì)即可得出,即的度數(shù)不變;
(3)易證為等腰三角形,由等腰三角形及等邊三角形的性質(zhì)可得出,進(jìn)而可得出.
解:(1)∵在中,,,
∴,.
∵點(diǎn)是中點(diǎn),
∴,
∴為等邊三角形.
故答案為:等邊三角形.
(2)的度數(shù)不變,理由如下:
∵,點(diǎn)是中點(diǎn),
∴,
∴.
∵為等邊三角形,
∴.
又∵為等邊三角形,
∴,
∴,
∴.
在和中,
,
∴,
∴,
即的度數(shù)不變.
(3)∵為等邊三角形,
∴.
∵,
∴,
∴為等腰三角形,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C為線段BD上的一點(diǎn),△ABC和△CDE是等邊三角形.
(1)求證:AD=BE.
(2)以點(diǎn)C為中心,將△CDE逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為ɑ(0°<ɑ<360°).
①當(dāng)ɑ為多少時(shí)DE∥AB?直接寫(xiě)出結(jié)果,不要求證明.
②當(dāng)BC=6, CD=4時(shí) ,設(shè)點(diǎn)E到直線AB的距離為y, 當(dāng)ɑ為多少時(shí),點(diǎn)E到直線AB的距離最小?求出最小值,并簡(jiǎn)潔說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=3x﹣5與反比例函數(shù)y2=的圖象相交A(2,m),B(n,﹣6)兩點(diǎn),連接OA,OB.
(1)求k和n的值;
(2)求△AOB的面積;
(3)直接寫(xiě)出y1> y2時(shí)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地鐵10號(hào)線某站點(diǎn)出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點(diǎn)端6米的處,用1.5米的測(cè)角儀測(cè)得電梯終端處的仰角為14°,求電梯的坡度與長(zhǎng)度.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知正方形的頂點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,頂點(diǎn)在第一象限內(nèi),拋物線(常數(shù))的頂點(diǎn)為正方形對(duì)角線上一動(dòng)點(diǎn).
(1)當(dāng)拋物線經(jīng)過(guò)兩點(diǎn)時(shí),求拋物線的解析式;
(2)若拋物線與直線相交于另一點(diǎn)(非拋物線頂點(diǎn),且在第一象限內(nèi)),求證:長(zhǎng)是定值;
(3)根據(jù)(2)的結(jié)論,取的中點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,弦,
(1)求證:是等邊三角形.
(2)若點(diǎn)是的中點(diǎn),連接,過(guò)點(diǎn)作,垂足為,若,求線段的長(zhǎng);
(3)若的半徑為4,點(diǎn)是弦的中點(diǎn),點(diǎn)是直線上的任意一點(diǎn),將點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得點(diǎn),求線段的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,,為上一點(diǎn),過(guò)點(diǎn)作的弦,設(shè).
(1)若時(shí),求、的度數(shù)各是多少?
(2)當(dāng)時(shí),是否存在正實(shí)數(shù),使弦最短?如果存在,求出的值,如果不存在,說(shuō)明理由;
(3)在(1)的條件下,且,求弦的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在海灣森林公園放風(fēng)箏.如圖所示,小明在A處,風(fēng)箏飛到C處,此時(shí)線長(zhǎng)BC為40米,若小明雙手牽住繩子的底端B距離地面1.5米,從B處測(cè)得C處的仰角為60°,求此時(shí)風(fēng)箏離地面的高度CE.(計(jì)算結(jié)果精確到0.1米,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=3,BC=5,以點(diǎn)B的圓心,以任意長(zhǎng)為半徑作弧,分別交BA、BC于點(diǎn)P、Q,再分別以P、Q為圓心,以大于PQ的長(zhǎng)為半徑作弧,兩弧在∠ABC內(nèi)交于點(diǎn)M,連接BM并延長(zhǎng)交AD于點(diǎn)E,則DE的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com