【題目】如圖,在菱形ABCD中,∠BCD=110°,AB的垂直平分線交對角線AC于點F,E為垂足,連接DF,則∠CDF等于(  )

A. 15° B. 25° C. 45° D. 55°

【答案】A

【解析】

如圖,連接BF,根據(jù)菱形的性質(zhì)可得∠CAB=CAD=55°,ADC=ABC=70°,再根據(jù)線段垂直平分線的性質(zhì)可得FB=FA,從而可得∠FBA=FAB=55°,根據(jù)軸對稱性繼而可得∠ADF=ABF=55°,再根據(jù)∠CDF=CDA﹣ADF即可求得答案.

如圖,連接BF,

∵四邊形是菱形,

∴∠BCD=BAD=110°,

∴∠CAB=CAD=55°,ADC=ABC=70°,

EF垂直平分線段AB,

FB=FA,

∴∠FBA=FAB=55°,

B、D關(guān)于直線AC對稱,

∴∠ADF=ABF=55°,

∴∠CDF=CDA﹣ADF=70°﹣55°=15°,

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點A,0),B,0),且與y軸相交于點C

1求這條拋物線的表達式;

2)求∠ACB的度數(shù);

3設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當(dāng)DCEAOC相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCDCB中,ABDC,ACDB,ACDB交于點M

1)求證:ABC≌△DCB;

2)過點CCNBD,過點BBNAC,CNBN交于點N,試判斷BNC的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,已知ABC,請你作出AB邊上的高CD,AC邊上的中線BE,角平分線AF(不寫作法,保留痕跡)

(2)如圖,直線l表示一條公路,點A,點B表示兩個村莊.現(xiàn)要在公路上造一個車站,并使車站到兩個村莊A,B的距離之和最短,問車站建在何處?請在圖上標(biāo)明地點,并說明理由.(要求尺規(guī)作圖,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,∠BAC120°,ADBC,且ADAB,∠EDF60°,且∠EDF兩邊分別交邊AB,AC于點EF,求證:BEAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個結(jié)論:①存在實數(shù)a,使得方程恰有2個不同的實根; ②存在實數(shù)a,使得方程恰有3個不同的實根;③存在實數(shù)a,使得方程恰有4個不同的實根;④存在實數(shù)a,使得方程恰有6個不同的實根;其中正確的結(jié)論個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張三角形紙片ABC,已知∠B=∠Cα,按下列方案用剪刀沿著箭頭方向剪開,所剪下的三角形紙片不一定是全等圖形的是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在x軸的正半軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,延長AB交該函數(shù)圖象于另一點C,BC=3AB,點D也在該函數(shù)的圖象上,BD=BC,以BC,BD為邊構(gòu)造CBDE,若點O,B,E在同一條直線上,且CBDE的周長為k,則AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知點A(1,a是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、DB(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點D坐標(biāo)并直接寫出y1y2x的取值范圍;

(3)動點Px,0)x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達到最大時,求點P的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案