【題目】已知的直徑為10cm,AB,CD的兩條弦,,,,則弦ABCD之間的距離是______cm

【答案】71

【解析】

分兩種情況考慮:當(dāng)兩條弦位于圓心O一側(cè)時,如圖1所示,過O,交CD于點F,交AB于點E,連接OAOC,由,得到,利用垂徑定理得到EF分別為CDAB的中點,在直角三角形AOF中,利用勾股定理求出OF的長,在三角形COE中,利用勾股定理求出OE的長,由即可求出EF的長;當(dāng)兩條弦位于圓心O兩側(cè)時,如圖2所示,同理由求出EF的長即可.

解:分兩種情況考慮:

當(dāng)兩條弦位于圓心O一側(cè)時,如圖1所示,

O,交AB于點E,交CD于點F,連接OAOC,

,

F分別為AB、CD的中點,

,

中,,

根據(jù)勾股定理得:,

中,,,

根據(jù)勾股定理得:

當(dāng)兩條弦位于圓心O兩側(cè)時,如圖2所示,同理可得

綜上,弦ABCD的距離為7cm1cm

故答案為:71

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在現(xiàn)今互聯(lián)網(wǎng)+”的時代,密碼與我們的生活已經(jīng)緊密相連,密不可分,而諸如“123456”、生日等簡單密碼又容易被破解,因此利用簡單方法產(chǎn)生一組容易記憶的密碼就很有必要了,有一種用因式分解法產(chǎn)生的密碼、方便記憶,其原理是:將一個多項式分解因式,如多項式:因式分解的結(jié)果為,當(dāng),此時可以得到數(shù)字密碼171920.

(1)根據(jù)上述方法,當(dāng),對于多項式分解因式后可以形成哪些數(shù)字密碼?(寫出三個)

(2)若一個直角三角形的周長是24,斜邊長為10,其中兩條直角邊分別為x、y,求出一個由多項式分解因式后得到的密碼(只需一個即可);

(3)若多項式因式分解后,利用本題的方法,當(dāng)時可以得到其中一個密碼為242834,m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=-x+2x軸、y軸分別交于點A、C,拋物線y=-x2bxc過點AC,且與x軸交于另一點B,在第一象限的拋物線上任取一點D,分別連接CD、AD,作于點E

(1)求拋物線的表達(dá)式;

(2)ACD面積的最大值;

(3)CEDCOB相似,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:(1)求出yx之間的函數(shù)關(guān)系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤,那么每件商品的銷售價應(yīng)定為多少元?(3)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)a、b都是常數(shù),且a<0)的圖像與x軸交于點、,頂點為點C.

1)求這個二次函數(shù)的解析式及點C的坐標(biāo);

2)過點B的直線交拋物線的對稱軸于點D,聯(lián)結(jié)BC,求∠CBD的余切值;

3)點P為拋物線上一個動點,當(dāng)∠PBA=CBD時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是  

A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次

D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個頂點的坐標(biāo)分別為A2,4),B1,1),C43).

1)請畫出ABC繞點O逆時針旋轉(zhuǎn)90°后的A1B1C1;并寫出A1、B1、C1三點的坐標(biāo).

2)求出(1)中C點旋轉(zhuǎn)到C1點所經(jīng)過的路徑長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+5y軸交于點A,與x軸交于點B.拋物線y=﹣x2+bx+cAB兩點.

1)寫出點A,B的坐標(biāo);

2)求拋物線的解析式;

3)過點AAC平行于x軸,交拋物線于點C,點P為拋物線上的一動點(點PAC上方),作PD平行于y軸交AB于點D,問當(dāng)點P在何位置時,四邊形APCD的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自主學(xué)習(xí),請閱讀下列解題過程.

解一元二次不等式:x2﹣3x>0.

解:設(shè)x2﹣3x=0,解得:x1=0,x2=5.則拋物線y=x2﹣3x與x軸的交點坐標(biāo)為(0,0)和(3,0).畫出二次函數(shù)y=x2﹣3x的大致圖象(如圖所示),由圖象可知:當(dāng)x<0或x>3時函數(shù)圖象位于x軸上方,此時y>0,即x2﹣3x>0,所以,一元二次不等式x2﹣3x>0的解集為:x<0或x>3.

通過對上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:

(1)上述解答過程中,滲透了下列數(shù)學(xué)思想中的      .(只填序號)

①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想 ④整體思想

(2)一元二次不等式x2﹣3x<0的解集為   

(3)用類似的方法解一元二次不等式:x2﹣3x﹣4<0的解集.

查看答案和解析>>

同步練習(xí)冊答案