【題目】已知直線y=-x+2與x軸、y軸分別交于點(diǎn)A、C,拋物線y=-x2+bx+c過點(diǎn)A、C,且與x軸交于另一點(diǎn)B,在第一象限的拋物線上任取一點(diǎn)D,分別連接CD、AD,作于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)求△ACD面積的最大值;
(3)若△CED與△COB相似,求點(diǎn)D的坐標(biāo).
【答案】(1);(2)4;(3)點(diǎn)D的坐標(biāo)為D1(3,2)、D2(,).
【解析】分析:(1)根據(jù)直線y=-x+2與x軸,y軸相交于點(diǎn)A,C,求點(diǎn)A,C的坐標(biāo),用待定系數(shù)法求拋物線的解析式;(2)過點(diǎn)D作DG⊥x軸于點(diǎn)G,交AC于點(diǎn)F,設(shè)D(t,),由S△ACD=S△CDF+S△ADF,用含t的代數(shù)式表示S△ACD,結(jié)合二次函數(shù)的性質(zhì)求解;(3)除了∠BOC=∠CED外,△BOC與△CDE的對應(yīng)關(guān)系不確定,所以需要分兩類討論,①當(dāng)∠DCE=∠BCO時,可得CD∥AB,點(diǎn)C,D的縱坐標(biāo)相等;②當(dāng)∠DCE=∠CBO時,將△OCA沿AC翻折得△MCA,點(diǎn)O的對稱點(diǎn)為點(diǎn)M,過點(diǎn)M作MH⊥y軸于點(diǎn)H,AN⊥MH于點(diǎn)N,利用相似三角形的性質(zhì)和勾股定理求出點(diǎn)M的坐標(biāo)后,再由直線CM與拋物線的交點(diǎn)列方程組求解.
詳解:(1)∵直線與x軸.y軸分別交于點(diǎn)A.C,
∴A(4,0),C(0,2),OA=4,OC=2,
將A(4,0),C(0,2)分別代入中,
,解得.
∴.
(2)如圖1,過點(diǎn)D作DG⊥x軸于點(diǎn)G,交AC于點(diǎn)F,
設(shè)D(t,),其中,則F(t,).
∴DF=-()=,
S△ACD=S△CDF+S△ADF
=
=
=
=
=.
∴當(dāng)t=2時,S△ACD最大=4.
(3)設(shè)y=0,則=0,解得,,
∴B(-1,0),OB=1.
∵,,∴.
∵∠BOC=∠COA=90°,
∴△BOC∽△COA,
∴∠OCB=∠OAC,∴∠OCA=∠OBC.
①當(dāng)∠DCE=∠BCO時,∠DCE=∠OAC,
∴CD∥OA,點(diǎn)D的縱坐標(biāo)與點(diǎn)C縱坐標(biāo)相等,
令y=2,則=2,解得,,
∴D1(3,2).
②如圖2,當(dāng)∠DCE=∠CBO時,∠DCE=∠OCA,
將△OCA沿AC翻折得△MCA,點(diǎn)O的對稱點(diǎn)為點(diǎn)M,
過點(diǎn)M作MH⊥y軸于點(diǎn)H,AN⊥MH于點(diǎn)N,
則CM=CO=2,AM=AO=4,
設(shè)HM=m,MN=HN-HM=OA-HM=4-m,
由∠AMC=∠AOC=∠ANM=∠MHC=90°易證△CHM∽△MNA,且相似比,
∴AN=2MH=2m,CH=MN=2-m,
在Rt△CMH中,由勾股定理得:,解得,,
∴MH=,OH=,M(,).
設(shè)直線CM的表達(dá)式為y=kx+n,則,解得,
∴,
由,解得,,
∴D2(,).
綜上所述,點(diǎn)D的坐標(biāo)為D1(3,2).D2(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明將一個正方形紙剪去一個寬為的長條后, 再從剩下的長方形紙片上剪去一個寬為的長條,如果兩次剪下的長條面積正好相等,那么剩下的白色長方形紙的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,直線y=-x+b分別交OA、AB于點(diǎn)C、D,且ΔBOD的面積是4.
(1)求直線AO的解析式;
(2)求直線CD的解析式;
(3)若點(diǎn)M是x軸上的點(diǎn),且使得點(diǎn)M到點(diǎn)A和點(diǎn)C的距離之和最小,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校近期舉辦了一年一度的經(jīng)典誦讀比賽.某班級因節(jié)目需要,須購買A、B兩種道具.已知購買1件A道具比購買1件B道具多10元,購買2件A道具和3件B道具共需要45元.
(1)購買一件A道具和一件B道具各需要多少元?
(2)根據(jù)班級情況,需要這兩種道具共60件,且購買兩種道具的總費(fèi)用不超過620元.
①請問道具A最多購買多少件?
②若其中A道具購買的件數(shù)不少于B道具購買件數(shù),該班級共有幾種方案?試寫出所有方案,并求出最少費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,線段AB的中點(diǎn)表示的數(shù)為.如:如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,則A、兩點(diǎn)間的距離AB=|﹣2﹣8|=10,線段AB的中點(diǎn)C表示的數(shù)為=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位長度的速度向左勻速運(yùn)動.設(shè)運(yùn)動時間為t秒(t>0).
(1)用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ,點(diǎn)Q表示的數(shù)為 .
(2)求當(dāng)t為何值時,P、Q兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);
(3)求當(dāng)t為何值時,PQ=AB;
(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4件同型號的產(chǎn)品中,有1件不合格品和3件合格品.
(1)從這4件產(chǎn)品中隨機(jī)抽取1件進(jìn)行檢測,求抽到的是不合格品的概率;
(2)從這4件產(chǎn)品中隨機(jī)抽取2件進(jìn)行檢測,求抽到的都是合格品的概率;
(3)在這4件產(chǎn)品中加入x件合格品后,進(jìn)行如下試驗(yàn):隨機(jī)抽取1件進(jìn)行檢測,然后放回,多次重復(fù)這個試驗(yàn),通過大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅心食品店想網(wǎng)購一種花生包裝袋,在網(wǎng)上搜索了、兩家網(wǎng)店(如圖所示),已知這兩家網(wǎng)店的這種花生包裝袋質(zhì)量相同,請看圖回答下列問題:
(1)假若紅心食品店想購買個花生包裝袋,那么在、兩家網(wǎng)店分別需要花多少錢(用含有的式子表示)?(提示:如需付運(yùn)費(fèi)時,運(yùn)費(fèi)只需付一次,即6元)
(2)紅心食品店打算一次購買200個花生包裝袋,選擇哪家網(wǎng)店更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線DE上有一點(diǎn)O,過點(diǎn)O在直線DE上方作射線OC,∠COE=140°,將一直角三角板AOB的直角頂點(diǎn)放在點(diǎn)O處,一條直角邊OA在射線OD上,另一邊OB在直線DE上方,將直角三角板繞著點(diǎn)O按每秒10°的速度逆時針旋轉(zhuǎn)一周,設(shè)旋轉(zhuǎn)時間為t秒.
(1)當(dāng)直角三角板旋轉(zhuǎn)到如圖2的位置時,OA恰好平分∠COD,求此時∠BOC的度數(shù);
(2)若射線OC的位置保持不變,在旋轉(zhuǎn)過程中,是否存在某個時刻,使得射線OA、OC、OD中的某一條射線是另兩條射線所成夾角的角平分線?若存在,請求出t的取值,若不存在,請說明理由;
(3)若在三角板開始轉(zhuǎn)動的同時,射線OC也繞O點(diǎn)以每秒15°的速度逆時針旋轉(zhuǎn)一周,從旋轉(zhuǎn)開始多長時間,射線OC平分∠BOD.直接寫出t的值.(本題中的角均為大于0°且小于180°的角)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,以A為圓心適當(dāng)長為半徑畫弧,分別交AC、AB于點(diǎn)M、N,分別以點(diǎn)M、N為圓心,大于MN的長為半徑畫弧交于點(diǎn)P,作射線AP交BC于點(diǎn)D,再作射線DE交AB于點(diǎn)E,則下列結(jié)論錯誤的是( 。
A. ∠ADB=120° B. S△ADC:S△ABC=1:3
C. 若CD=2,則BD=4 D. DE垂直平分AB
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com