【題目】小明有5張寫著不同數(shù)的卡片,請你分別按要求抽出卡片,寫出符合要求的算式:

(1)從中取出2張卡片,使這2張卡片上的數(shù)的乘積最大;

(2)從中取出2張卡片,使這2張卡片上的數(shù)相除的商最;

(3)從中取出2張卡片,使這2張卡片上的數(shù)通過有理數(shù)的運算后得到的結(jié)果最大;

(4)從中取出4張卡片,使這4張卡片通過有理數(shù)的運算后得到的結(jié)果為24.(寫出一種即可)

【答案】(1)15;(2);(3)625;(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24.

【解析】

(1)根據(jù)有理數(shù)的乘法法則即可確定;

(2)根據(jù)有理數(shù)的除法法則即可確定;

(3)根據(jù)組成數(shù)字的數(shù)的性質(zhì)(乘方)即可確定;

(4)根據(jù)有理數(shù)的混合運算法則即可確定.

解:(1)(-3)×(-5)=15.

(2)-5÷(+3)=-.

(3)(-5)4=625.

(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABCD中,ABC=60°,且AB=BC,MAN=60°.請?zhí)剿鰾M,DN與AB的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠B=∠C,AD∥BC.

(1)證明:AD平分∠CAE;

(2)如果∠BAC=120°,求∠B的度數(shù).(不允許使用三角形內(nèi)角和為180°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,BCAF于點C,∠A+∠190°.

1)求證:ABDE

2)如圖2,點P從點A出發(fā),沿線段AF運動到點F停止,連接PBPE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關(guān)系(不考慮點P與點A,D,C重合的情況)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABCD的對角線AC,BD交于點O,AE平分BAD交BC于點EADC=600,AB=BC,連接OE下列 結(jié)論:①∠CAD=300 SABCD=ABAC OB=AB OE=BC 成立的個數(shù)有( )

A1個 B2個 C3個 D4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A(0,﹣1),B(0,3),點M為第二象限內(nèi)一點,且點M的坐標為(t,1).

(1)請用含t的式子表示△ABM的面積;

(2)當t=﹣2時,在x軸的正半軸上有一點P,使得△BMP的面積與△ABM的面積相等,請求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件,使△ABE≌△CDF,則添加的條件不能為( 。

A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y= (k>0)的圖象上兩點A(x1, y1)和B(x2, y2),且x1x2>0,分別過A、Bx軸作AA1x軸于A1,BB1x軸于B1,則_________ (填“>”“=”或“<”),若=2,則函數(shù)解析式為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某食品加工廠需要一批食品包裝盒,供應(yīng)這種包裝盒有兩種方案可供選擇:

方案一:從包裝盒加工廠直接購買,購買所需的費y1與包裝盒數(shù)x滿足如圖1所示的函數(shù)關(guān)系.

方案二:租賃機器自己加工,所需費用y2(包括租賃機器的費用和生產(chǎn)包裝盒的費用)與包裝盒數(shù)x滿足如圖2所示的函數(shù)關(guān)系.根據(jù)圖象回答下列問題:

1)方案一中每個包裝盒的價格是多少元?

2)方案二中租賃機器的費用是多少元?生產(chǎn)一個包裝盒的費用是多少元?

3)請分別求出y1、y2x的函數(shù)關(guān)系式.

4)如果你是決策者,你認為應(yīng)該選擇哪種方案更省錢?并說明理由

查看答案和解析>>

同步練習冊答案