【題目】【問題背景】

如圖①所示,在正方形ABCD的內(nèi)部,作∠DAE=ABF=BCG=CDH,根據(jù)三角形全等的條件,易得DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形.

【類比研究】

如圖②所示,在正ABC的內(nèi)部,作∠BAD=CBE=ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合).

(1)ABD,BCE,CAF是否全等?如果是,請選擇其中一對進行證明;

(2)DEF是否為正三角形?請說明理由;

(3)連結(jié)AE,若AF=DF,AB=7,求DEF的邊長.

【答案】(1)ABD≌△BCE≌△CAF;理由見解析;(2)DEF是正三角形;理由見解析;(3)

【解析】分析:(1)由正三角形的性質(zhì)得出∠CAB=ABC=BCA=60°,AB=BC,證出∠ABD=BCE,由ASA證明ABD≌△BCE即可;

(2)由全等三角形的性質(zhì)得出∠ADB=BEC=CFA,證出∠FDE=DEF=EFD,即可得出結(jié)論;

(3)先判斷出AF=FD=EF,進而得出∠FAE=FEA=30°,即:∠DEA=90°,再用勾股定理得出AE,即可得出結(jié)論.

詳解:(1)ABD≌△BCE≌△CAF;理由如下:

∵△ABC是正三角形,

∴∠CAB=ABC=BCA=60°,AB=BC,

∵∠ABD=ABC-CBE,BCE=ACB-ACF,CBE=ACF,

∴∠ABD=BCE,

ABDBCE中,

,

∴△ABD≌△BCE(ASA);

同理:ABDCAF,

即:ABD≌△BCE≌△CAF

(2)DEF是正三角形;理由如下:

∵△ABD≌△BCE≌△CAF,

∴∠ADB=BEC=CFA,

∴∠FDE=DEF=EFD,

∴△DEF是正三角形;

(3)∵△DEF是正三角形,

∴∠DFE=FDE=60°,

AF=FD,

AF=FD=EF,

∴∠FAE=FEA=30°,

∴∠DEA=90°,

設(shè)DE=x,則AD=BE=2x,

RtADE中,AE2=AD2-DE2=3x2

RtABE中,AB=7,AB2=BE2+AE2,

即,49=4x2+3x2,

x=-(舍)或x=,

∴△DEF的邊長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=10,CA=8BC=6,∠BAC的平分線與∠BCA的平分線交于點I,且DIBCAB于點D,則DI的長為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a、b、c在數(shù)軸上的位置如圖所示

1)比較a、b、|c|的大小(用“>”連接);

2)若n=|b+c||c1||ba|,求的值;

3)若a=,b=2,c=3,且a、b、c對應(yīng)的點分別為A、BC,問在數(shù)軸上是否存在一點M,使MB的距離是MA的距離的3倍,若存在,請求出M點對應(yīng)的有理數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校一社團為了了解市區(qū)初中學(xué)生視力變化情況,從市區(qū)年入校的學(xué)生中隨機抽取了部分學(xué)生連續(xù)三年的視力跟蹤調(diào)查,并將收集到的數(shù)據(jù)進行整理,制成了折線統(tǒng)計圖和扇形統(tǒng)計圖.

1)這次接受調(diào)查的學(xué)生有_____________人;

2)扇形統(tǒng)計圖中“”所對應(yīng)的圓心角有多少度?

3)現(xiàn)規(guī)定視力達到及以上為合格,若市區(qū)年入校的學(xué)生共計人,請你估計該屆名學(xué)生的視力在年有多少名學(xué)生合格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面坐標系中,點、點分別在軸、軸的正半軸上,且,另有兩點、均大于

1)連接、,求證:;

2)連接、,若,,求的度數(shù);

3)若,在線段上有一點,且,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市在城中村改造中,需要種植、兩種不同的樹苗共棵,經(jīng)招標,承包商以萬元的報價中標承包了這項工程,根據(jù)調(diào)查及相關(guān)資料表明, 、兩種樹苗的成本價及成活率如表:

品種

購買價(元/棵)

成活率

設(shè)種植種樹苗棵,承包商獲得的利潤為元.

)求之間的函數(shù)關(guān)系式.

)政府要求栽植這批樹苗的成活率不低于,承包商應(yīng)如何選種樹苗才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在反比例函數(shù),的圖像上,點在反比例函數(shù)的圖像上, 軸于點.且,則的值為(

A.-3B.-6C.2D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解今年初三學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,某校對上學(xué)期的數(shù)學(xué)成績作了統(tǒng)計分析,繪制得到如下圖表.請結(jié)合圖表所給出的信息解答下列問題:

成績

頻數(shù)

頻率

優(yōu)秀

45

b

良好

a

0.3

合格

105

0.35

不合格

60

c

(1)該校初三學(xué)生共有多少人?

(2)求表中a,b,c的值,并補全條形統(tǒng)計圖.

(3)初三(一)班數(shù)學(xué)老師準備從成績優(yōu)秀的甲、乙、丙、丁四名同學(xué)中任意抽取兩名同學(xué)做學(xué)習(xí)經(jīng)驗介紹,求恰好選中甲、乙兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.

(1)當m=4,n=20時.

①若點P的縱坐標為2,求直線AB的函數(shù)表達式.

②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案