【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

【答案】(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.

【解析】

(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;
②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;
(2)先確定出B(4,),D(4,),進(jìn)而求出點(diǎn)P的坐標(biāo),再求出A,C坐標(biāo),最后用AC=BD,即可得出結(jié)論.

(1)①如圖1,

,

反比例函數(shù)為,

當(dāng)時(shí),,

當(dāng)時(shí),

,

,

,

設(shè)直線的解析式為,

,

直線的解析式為

②四邊形是菱形,

理由如下:如圖2,

由①知,,

軸,

點(diǎn)是線段的中點(diǎn),

,

當(dāng)時(shí),由得,

得,

,

,

,

四邊形為平行四邊形,

,

四邊形是菱形;

(2)四邊形能是正方形,

理由:當(dāng)四邊形是正方形,記,的交點(diǎn)為,

,

當(dāng)時(shí),

,

,

,,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖菱形ABCD,四個(gè)頂點(diǎn)分別是A(-2,-1),B1,-3),C4,-1),D1,1).將菱形沿x軸負(fù)方向平移3個(gè)單位長度得到菱形A1B1C1D1,再將菱形ABCD沿y軸正方向平移4個(gè)單位長度得到菱形A2B2C2D2,畫出平移后的兩個(gè)圖形并分別寫出它們的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi)有∠AOB=60°,∠AOC=40°OD是∠AOB的平分線,OE是∠AOC的平分線,求∠DOE的度數(shù).(請作圖解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F(xiàn),且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王購買了一套一居室,他準(zhǔn)備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)(單位:米),解答下列問題:

(1)用含 的代數(shù)式表示地面的總面積 ;

(2)已知 ,且客廳面積是衛(wèi)生間面積的 倍,如果鋪 平方米地磚的平均費(fèi)用為 元,那么小王鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BCCD上,∠EAF45°,試判斷BEEF、FD之間的數(shù)量關(guān)系.

(發(fā)現(xiàn)證明)小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EFBE+FD,請你利用圖(1)證明上述結(jié)論.

(類比引申)如圖(2),四邊形ABCD中,∠BAD≠90°,ABAD,∠B+D180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足   關(guān)系時(shí),仍有EFBE+FD

(探究應(yīng)用)如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知ABAD80米,∠B60°,∠ADC120°,∠BAD150°,道路BCCD上分別有景點(diǎn)E、F,∠EAF75°AEADDF401)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù):≈1.41≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖像增大而減小,且經(jīng)過點(diǎn)

求(1的值;

2)求該直線與坐標(biāo)軸圍成的三角形的面積及坐標(biāo)原點(diǎn)到直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線叫做該平面圖形的等積線,等積線被 這個(gè)平面圖形截得的線段叫做該圖形的等積線段(例如三角形的中線就是三角形的等積線段).已 知菱形的邊長為 4,且有一個(gè)內(nèi)角為 60°,設(shè)它的等積線段長為 m,則 m 的取值范圍是(

A. m=4 m=4 B. 4m4 C. 2 D. 2 m4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖8,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B(,)是以O(shè)A為直徑的⊙M上的一點(diǎn),且tan∠AOB=,BH⊥軸,H為垂足,點(diǎn)C(,).

(1)求H點(diǎn)的坐標(biāo);

(2)求直線BC的解析式;

(3)直線BC是否與⊙M相切?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案