【題目】如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為_____.
【答案】3﹣3.
【解析】
將△ABD繞點A逆時針旋轉120°得到△ACF,連接EF,過點E作EM⊥CF于點M,過點A作AN⊥BC于點N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通過角的計算可得出∠FAE=60°,結合旋轉的性質可證出△ADE≌△AFE(SAS),進而可得出DE=FE,設CE=2x,則CM=x,EM=x、FM=4x-x=3x、EF=ED=6-6x,在Rt△EFM中利用勾股定理可得出關于x的一元二次方程,解之可得出x的值,再將其代入DE=6-6x中即可求出DE的長.
將△ABD繞點A逆時針旋轉120°得到△ACF,連接EF,過點E作EM⊥CF于點M,過點A作AN⊥BC于點N,如圖所示,
,
∵AB=AC=2,∠BAC=120°,
∴BN=CN,∠B=∠ACB=30°,
在Rt△BAN中,∠B=30°,AB=2,
∴AN=AB=,BN= =3,
∴BC=6,
∵∠BAC=12°,∠DAE=60°,
∴∠BAD+∠CAE=60°,
∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°,
在△ADE和△AFE中,,
∴△ADE≌△AFE(SAS),
∴DE=FE,
∵BD=2CE,BD=CF,∠ACF=∠B=30°,
∴設CE=2x,則CM=x,EM=x,F(xiàn)M=4xx=3x,EF=ED=66x.
在Rt△EFM中,FE=66x,FM=3x,EM=x,
∴EF2=FM2+EM2,,即(66x)2=(3x)2+(x)2,
解得:x1=,x2= (不合題意,舍去),
∴DE=66x=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=的圖象交于A、B兩點,點A坐標為(m,2),點B坐標為(﹣4,n),OA與x軸正半軸夾角的正切值為,直線AB交y軸于點C,過C作y軸的垂線,交反比例函數(shù)圖象于點D,連接OD、BD.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求四邊形OCBD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(1,a)是反比例函數(shù)y=﹣的圖象上一點,直線y=﹣x+與反比例函數(shù)y=﹣的圖象在第四象限的交點為點B,動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,則點P的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.
(1)求線段AD的長;
(2)平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2015南通)如圖,在ABCD中,點E,F分別在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求證:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求證:DA=DF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的頂點為C(﹣1,﹣1),且經(jīng)過點A、點B和坐標原點O,點B的橫坐標為﹣3.
(1)求拋物線的解析式.
(2)求點B的坐標及△BOC的面積.
(3)若點D為拋物線上的一點,點E為對稱軸上的一點,且以點A、O、D、E為頂點的四邊形為平行四邊形,請在左邊的圖上標出D和E的位置,再直接寫出點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線 與雙曲線的一個交點為P(2,m),與x軸、y軸分別交于點A,B.
(1)求m的值;
(2)若PA=2AB,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,某校開展“經(jīng)典誦讀”比賽活動,誦讀材料有《論語》、《大學》、《中庸》(依次用字母A,B,C表示這三個材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時小禮先從中隨機抽取一張卡片,記下內容后放回,洗勻后,再由小智從中隨機抽取一張卡片,他倆按各自抽取的內容進行誦讀比賽.
(1)小禮誦讀《論語》的概率是 ;(直接寫出答案)
(2)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經(jīng)確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結果精確到0.1小時)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com