【題目】(2015南通)如圖,在ABCD中,點(diǎn)E,F分別在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求證:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求證:DA=DF.
【答案】答案見(jiàn)解析.
【解析】試題分析:(1)由平行四邊形的性質(zhì)得到對(duì)邊平行且相等,對(duì)角相等,再由垂直的定義得到一對(duì)直角相等,利用等式的性質(zhì)等到一對(duì)角相等,利用ASA即可得證;
(2)過(guò)點(diǎn)D作DH⊥AB,在Rt△ADH中,有AD=2DH,在Rt△DEB中,有EB=2DH,易得四邊形EBFD為平行四邊形,利用平行四邊形的對(duì)邊相等得到EB=DF,等量代換即可得證.
試題解析:(1)∵四邊形ABCD是平行四邊形,∴AD=CB,∠A=∠C,AD//CB,
∴∠ADB=∠CBD,
∵ED⊥DB,F(xiàn)B⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,
在△AED和△CFB中,∠ADE=∠CBD,AD=BC,∠A=∠C,∴△AED≌△CFB(ASA);
(2)作DH⊥AB,垂足為H,
在R t△ADH在,∠A=30°,∴AD=2DH,
在Rt△DEB中,∠DEB=45°,∴EB=2DH,
∵∠EDB=∠FBD=90°,∴DE//BF,又∵DC//AB,∴四邊形DEBF是平行四邊形,
∴FD=BE,∴DA=DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補(bǔ)選一個(gè),則錯(cuò)誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中剪去一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則△ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE,已知:∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說(shuō)明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑為AB,AC⊥AB于點(diǎn)A,BC與⊙O相交于點(diǎn)D,在AC上取一點(diǎn)E,使得ED=EA.
(1)求證:ED是⊙O的切線;
(2)當(dāng)OE=10時(shí),求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的外切正六邊形ABCDEF的邊長(zhǎng)為2,則圖中陰影部分的面積為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿∠CAB的角平分線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長(zhǎng)嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com