【題目】如圖,AB是⊙O的直徑,點(diǎn)PAB下方的半圓上不與點(diǎn)AB重合的一個(gè)動(dòng)點(diǎn),點(diǎn)CAP的中點(diǎn),連接CO并延長(zhǎng),交⊙O于點(diǎn)D,連接AD,過(guò)點(diǎn)D作⊙O的切線,交PB的延長(zhǎng)線于點(diǎn)E,連接CE

1)求證:DACECP;

2)填空:

①當(dāng)∠DAP=______°時(shí),四邊形DEPC為正方形;

②在點(diǎn) P的運(yùn)動(dòng)過(guò)程中,若⊙O的直徑為10,tanDCE=,則AD=______

【答案】1)見解析;(2)①45,②

【解析】

1)先由切線的性質(zhì)得到∠CDE90°,再利用垂徑定理的推理得到DCAP,接著根據(jù)圓周角定理得到∠APB90°,于是可判斷四邊形DEPC為矩形,所以DCEP,然后根據(jù)“SAS”判斷△DAC≌△ECP;

2)①利用四邊形DEPC為矩形得到DEPCAC,則根據(jù)正方形的判定方法得DCCP時(shí),四邊形DEPC為正方形,則DCCPAC,于是得到此時(shí)△ACD為等腰直角三角形,所以∠DAP45°;

②先證明∠ADC=∠DCE,再在RtACD中利用正切得到tanADC,則設(shè)ACx,DC2x,利用勾股定理得到ADx,然后在RtAOC中利用勾股定理得到x2+(2x5252,再解方程求出x即可得到AD的長(zhǎng).

1)證明:的直徑,

.

點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),

的中位線,,

,即.

是圓的切線,

,

四邊形為矩形,

.

,

.

2)解:①∵四邊形DEPC為矩形,

DEPCAC,

∵當(dāng)DCCP時(shí),四邊形DEPC為正方形,

此時(shí)DCCPAC,

∴△ACD為等腰直角三角形,

∴∠DAP45°

②∵DEAC,DEAC,

∴四邊形ACED為平行四邊形,

ADCE,

∴∠ADC=∠DCE,

RtACD中,tanADCtanDCE,

設(shè)ACx,則DC2x

AD,

RtAOC中,AO5,OCCDOD2x5,

x2+(2x5252,解得x10(舍去),x24,

AD

故答案為①45;②

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】尺規(guī)作圖要求:、過(guò)直線外一點(diǎn)作這條直線的垂線;、作線段的垂直平分線;

、過(guò)直線上一點(diǎn)作這條直線的垂線;、作角的平分線.

如圖是按上述要求排亂順序的尺規(guī)作圖:

則正確的配對(duì)是( 。

A. ﹣Ⅳ,﹣Ⅱ,﹣Ⅰ,﹣Ⅲ B. ﹣Ⅳ,﹣Ⅲ,﹣Ⅱ,﹣Ⅰ

C. ﹣Ⅱ,﹣Ⅳ,﹣Ⅲ,﹣Ⅰ D. ﹣Ⅳ,﹣Ⅰ,﹣Ⅱ,﹣Ⅲ

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸于點(diǎn)和點(diǎn),交軸于點(diǎn).已知點(diǎn)的坐標(biāo)為,點(diǎn)為第二象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),連接、、

1)求這個(gè)拋物線的表達(dá)式.

2)當(dāng)四邊形面積等于4時(shí),求點(diǎn)的坐標(biāo).

3)①點(diǎn)在平面內(nèi),當(dāng)是以為斜邊的等腰直角三角形時(shí),直接寫出滿足條件的所有點(diǎn)的坐標(biāo);

②在①的條件下,點(diǎn)在拋物線對(duì)稱軸上,當(dāng)時(shí),直接寫出滿足條件的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A4,0),點(diǎn)B0,3),點(diǎn)PBC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),經(jīng)過(guò)點(diǎn)O、P折疊該紙片,得點(diǎn)B和折痕OP.設(shè)BPt

1)如圖1,當(dāng)∠BOP30°時(shí),求點(diǎn)P的坐標(biāo);

2)如圖2,經(jīng)過(guò)點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB上,得點(diǎn)C和折痕PQ,設(shè)AQm,試用含有t的式子表示m;

3)在(2)的條件下,連接OQ,當(dāng)OQ取得最小值時(shí),求點(diǎn)Q的坐標(biāo);

4)在(2)的條件下,點(diǎn)C能否落在邊OA上?如果能,直接寫出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABCD為正方形,將正方形的邊CB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到CE,記BCE,連接BE,DE,過(guò)點(diǎn)CCFDEF,交直線BEH

(1)當(dāng)α=60°時(shí),如圖1,則BHC= ;

(2)當(dāng)45°<α<90°,如圖2,線段BH、EHCH之間存在一種特定的數(shù)量關(guān)系,請(qǐng)你通過(guò)探究,寫出這個(gè)關(guān)系式: (不需證明);

(3)當(dāng)90°<α<180°,其它條件不變(如圖3),(2)中的關(guān)系式是否還成立?若成立,說(shuō)明理由;若不成立,寫出你認(rèn)為成立的結(jié)論,并簡(jiǎn)要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線的開口向下與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合)

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)是拋物線上一個(gè)動(dòng)點(diǎn),若的面積為12,求點(diǎn)的坐標(biāo);

(3)如圖2,拋物線的頂點(diǎn)為,在拋物線上是否存在點(diǎn),使得,若存在請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形ABCD中,∠ACB30°,將△ACDC點(diǎn)順時(shí)針旋轉(zhuǎn)α0°<α360°)至△A'CD'位置.

1)如圖2,若AB2,α30°,求SBCD

2)如圖3,取AA′中點(diǎn)O,連OBOD′、BD′.若△OBD′存在,試判定△OBD′的形狀.

3)當(dāng)αα1時(shí),OBOD′,則α1   °;當(dāng)αα2時(shí),△OBD′不存在,則α2   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了推動(dòng)陽(yáng)光體育運(yùn)動(dòng)的廣泛開展,引導(dǎo)學(xué)生走向操場(chǎng)、走進(jìn)大自然、走到陽(yáng)光下,積極參加體育鍛煉,學(xué)校準(zhǔn)備購(gòu)買一批運(yùn)動(dòng)鞋供學(xué)生借用.現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為________,圖①中的值為________;

(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購(gòu)買150雙運(yùn)動(dòng)鞋,建議購(gòu)買35號(hào)運(yùn)動(dòng)鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若存在過(guò)點(diǎn)P的直線l交⊙C于異于點(diǎn)P的A,B兩點(diǎn),在P,A,B三點(diǎn)中,位于中間的點(diǎn)恰為以另外兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)時(shí),則稱點(diǎn)P為⊙C 的相鄰點(diǎn),直線l為⊙C關(guān)于點(diǎn)P的相鄰線.

1)當(dāng)⊙O的半徑為1時(shí),

分別判斷在點(diǎn)D,),E0,),F40)中,是⊙O的相鄰點(diǎn)有__________

請(qǐng)從中的答案中,任選一個(gè)相鄰點(diǎn),在圖1中做出⊙O關(guān)于它的一條相鄰線,并說(shuō)明你的作圖過(guò)程.

點(diǎn)P在直線上,若點(diǎn)P⊙O的相鄰點(diǎn),求點(diǎn)P橫坐標(biāo)的取值范圍;

2⊙C的圓心在x軸上,半徑為1,直線x軸,y軸分別交于點(diǎn)M,N,若線段MN上存在⊙C的相鄰點(diǎn)P,直接寫出圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案