【題目】作三角形用到的基本作圖是:
(1)___________________________;(2)_______________________________;
【答案】 作一個角等于已知角 作一條線段等于已知線段
【解析】試題解析:作三角形用到的基本作圖是:(1). 作一個角等于已知角(2). 作一條線段等于已知線段
故答案為:(1). 作一個角等于已知角(2). 作一條線段等于已知線段.
【題型】填空題
【結(jié)束】
10
【題目】尺規(guī)作三角形的類型:
尺 規(guī) 作 圖 | 類型 | 依據(jù) |
已知兩邊及其夾角作三角形 | __________ | |
已知兩角一邊作三角形 | __________(或) | |
已知三邊作三角形 | __________ |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出下列三個論斷:①∠B+∠D=180°;②AB∥CD;③BC∥DE.(1)在上述三個論斷中,以其中兩個論斷作為條件,另外一個論斷作結(jié)論,寫出一個正確的命題,并加以證明。
命題:如果____________________那么____________________
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以△ABC的邊AB為直徑作⊙O,點C在⊙O上,BD是⊙O的弦,∠A=∠CBD,過點C作CF⊥AB于點F,交BD于點G,過C作CE∥BD交AB的延長線于點E.
(1)求證:CE是⊙O的切線;
(2)求證:CG=BG;
(3)若∠DBA=30°,CG=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l的解析式為y=x+b,它與坐標(biāo)軸分別交于A、B兩點,其中B坐標(biāo)為(0,4).
(1)求出A點的坐標(biāo);
(2)若點 P在y軸上,且到直線l的距離為3,試求點P的坐標(biāo);
(3)在第一象限的角平分線上是否存在點Q使得∠QBA=90°?若存在,求點Q的坐標(biāo);若不存在,請說明理由.
(4)動點C從y軸上的點(0,10)出發(fā),以每秒1cm的速度向y軸負(fù)半軸方向運動,求出點C運動中所有可能的時間t值,使得△ABC為軸對稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】比—3大的負(fù)整數(shù)是_____________,比3小的非負(fù)整數(shù)是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作三角形的類型:
尺 規(guī) 作 圖 | 類型 | 依據(jù) |
已知兩邊及其夾角作三角形 | __________ | |
已知兩角一邊作三角形 | __________(或) | |
已知三邊作三角形 | __________ |
【答案】 SAS ASA SSS
【解析】試題解析:已知兩邊及其夾角作三角形,其依據(jù)是:SAS.
已知兩角一邊作三角形,其依據(jù)是:ASA(或).
已知三邊作三角形, 其依據(jù)是:
故答案為:
點睛:判定三角形全等的方法有:
【題型】填空題
【結(jié)束】
11
【題目】如圖,根據(jù)圖中作圖痕跡,可以得出作三角形的依據(jù)分別是:
(1)__________;
(2)___________;
(3)__________.(圖中虛線表示最后作出的線段)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年某市有23 000名初中畢業(yè)生參加了升學(xué)考試,為了解23 000名考生的升學(xué)成績,從中抽取了200名考生的試卷進行統(tǒng)計分析,以下說法正確的是( )
A.23 000名考生是總體B.每名考生的成績是個體
C.200名考生是總體的一個樣本D.以上說法都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BF是⊙O的直徑,A為⊙O上(異于B、F)一點,⊙O的切線MA與FB的延長線交于點M;P為AM上一點,PB的延長線交⊙O于點C,D為BC上一點且PA=PD,AD的延長線交⊙O于點E.
(1)求證: ;
(2)若ED、EA的長是一元二次方程的兩根,求BE的長;
(3)若MA=,sin∠AMF=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=∠ACB,點D在BC所在的直線上,點E在射線AC上,且AD=AE,連接DE.
⑴如圖①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度數(shù);
⑵如圖②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度數(shù);
⑶當(dāng)點D在直線BC上(不與點B、C重合)運動時,試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com