【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA與x軸重合,B的坐標為(﹣1,2),將矩形OABC繞平面內(nèi)一點P順時針旋轉(zhuǎn)90°,使A、C兩點恰好落在反比例函數(shù) 的圖象上,則旋轉(zhuǎn)中心P點的坐標是( 。
A. (,﹣) B. (,﹣) C. (,﹣) D. (,﹣)
【答案】C
【解析】
設(shè)A'(a,),則C'(a+2,-1),依據(jù)反比例函數(shù)圖象上點的坐標特征,即可得到a=2,進而得出A'(2,2),C'(4,1),設(shè)P(x,y),再根據(jù)AP=A'P,CP=C'P,即可得到方程組,進而得出旋轉(zhuǎn)中心P點的坐標.
解:如圖,
∵B的坐標為(-1,2),
∴矩形的長為2,寬為1,
由旋轉(zhuǎn)可得,A'O'⊥x軸,O'C'⊥y軸,
設(shè)A'(a,),則C'(a+2,-1),
∵點C'在反比例函數(shù)y=的圖象上,
∴(a+2)(-1)=4,
解得a=2(負值已舍去),
∴A'(2,2),C'(4,1),
由旋轉(zhuǎn)的性質(zhì)可得,AP=A'P,CP=C'P,
設(shè)P(x,y),則
,
解得,
∴旋轉(zhuǎn)中心P點的坐標是(,-),
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經(jīng)確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結(jié)果精確到0.1小時)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】滿足下列條件的△ABC不是直角三角形的是()
A. BC=1,AC=2,AB=
B. BC=1,AC=2,AB=
C. BC:AC:AB=3:4:5
D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,點D、E分別為邊BC、AC上的點,連接DE,過點E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,則BC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:數(shù)和形是數(shù)學(xué)的兩個主要研究對象,我們經(jīng)常運用數(shù)形結(jié)合,樹形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題,小明在求同一坐標軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標系內(nèi)任意兩點P1(x1,y1),P2(x2,y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2=,他還利用圖2證明了線段P1P2的中點P(x,y),P的坐標公式:x=,y=.
啟發(fā)應(yīng)用:
如圖3:在平面直角坐標系中,已知A(8,0),B(0,6),C(1,7),⊙M經(jīng)過原點O及點A,B,
(1)求⊙M的半徑及圓心M的坐標;
(2)判斷點C與⊙M的位置關(guān)系,并說明理由;
(3)若∠BOA的平分線交AB于點N,交⊙M于點E,分別求出OE的表達式y1,過點M的反比例函數(shù)的表達式y2,并根據(jù)圖象,當y2>y1>0時,請直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD垂直BC于點D,且AD=BC,BC上方有一動點P滿足,則點P到B、C兩點距離之和最小時,∠PBC的度數(shù)為( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的較短對角線BD為4,∠ADB=60°,E、F分別在AD,CD上,且∠EBF=60°.
(1)求證:△ABE≌△DBF;
(2)判斷△BEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)銷水杯,電熱水壺兩種商品,水杯每個進價15元,售價20元;電熱水壺每個進價35元,售價45元.
(1)若該商場同時購進水杯、電熱水壺共100件,恰好用去2700元,求能購進水杯、電熱水壺各多少個?
(2)商場要求小明用1050元的錢(必須全部用完)采購水杯、電熱水壺(或其中一種商品),且還要求總利潤不少于340元(假設(shè)商品全部賣完),請你確定所有的進貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在直角坐標系中,四邊形ABCO為正方形,A點的坐標為(a,0),D點的坐標為(0,b),且a,b滿足(a﹣3)2+|b﹣|=0.
(1)求A點和D點的坐標;
(2)若∠DAE=∠OAB,請猜想DE,OD和EB的數(shù)量關(guān)系,說明理由.
(3)若∠OAD=30°,以AD為三角形的一邊,坐標軸上是否存在點P,使得△PAD為等腰三角形,若存在,直接寫出有多少個點P,并寫出P點的坐標,選擇一種情況證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com