【題目】閱讀理解:數(shù)和形是數(shù)學(xué)的兩個主要研究對象,我們經(jīng)常運用數(shù)形結(jié)合,樹形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題,小明在求同一坐標(biāo)軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點P1x1,y1),P2x2,y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2=,他還利用圖2證明了線段P1P2的中點Px,y),P的坐標(biāo)公式:x=,y=

啟發(fā)應(yīng)用:

如圖3:在平面直角坐標(biāo)系中,已知A8,0),B0,6),C1,7),M經(jīng)過原點O及點A,B

1)求⊙M的半徑及圓心M的坐標(biāo);

2)判斷點C與⊙M的位置關(guān)系,并說明理由;

3)若∠BOA的平分線交AB于點N,交⊙M于點E,分別求出OE的表達(dá)式y1,過點M的反比例函數(shù)的表達(dá)式y2,并根據(jù)圖象,當(dāng)y2y10時,請直接寫出x的取值范圍.

【答案】(1)⊙M的半徑為5M4,3);(2C在⊙M上,理由見解析;(3y2= ,,y2y10時,0x2

【解析】試題分析:(1)先確定出AB=10,進而求出圓M的半徑,最后用線段的中點坐標(biāo)公式即可得出結(jié)論;
(2)求出CM=5和圓M的半徑比較大小,即可得出結(jié)論;
(3)先確定出直線和雙曲線解析式,即可求出兩圖象的交點坐標(biāo),即可得出結(jié)論.

試題解析:

1∵∠AOB=90°

AB是⊙M的直徑,

A8,0),B0,6),

AB==10,

∴⊙M的半徑為5,

由線段中點坐標(biāo)公式x=y=,得x=4,y=3,

M4,3),

2)點C在⊙M上,

理由:∵C1,7),M4,3),

CM==5,

∴點C在⊙M上;

3)由題意知,y1=x

設(shè)反比例函數(shù)的解析式為y2=k≠0),

M4,3)在反比例函數(shù)圖象上,

k=3×4=12,

∴反比例函數(shù)的解析式為y2= ,

當(dāng)y1=y2時,x=,

x=±2,

∴由圖象知,當(dāng)y2y10時,0x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC(AC<AB<BC),請用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):

(1)在邊BC上確定一點P,使得PA+PC=BC;

(2)作出一個△DEF,使得:①△DEF是直角三角形;②△DEF的周長等于邊BC的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘貨輪位于O地,發(fā)現(xiàn)燈塔A在它的正北方向上,這艘貨輪沿正東方向航行50千米,到達(dá)B地,此時用雷達(dá)測得燈塔A與貨輪的距離為100千米.

(1)在圖中作出燈塔A的位置,并作射線BA;

(2)以正北,正南方向為基準(zhǔn),借助量角器,描述燈塔AB地的什么方向上(精確到1°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形的邊長是1米;

1)若設(shè)圖中最大正方形的邊長是米,請用含的代數(shù)式分別表示出正方形的邊長

2)觀察圖形的特點可知,長方形相對的兩邊是相等的(即, )請根據(jù)以上結(jié)論,求出的值

3)現(xiàn)沿著長方形廣場的四條邊鋪設(shè)下水管道,由甲、乙工程隊單獨鋪設(shè)分別需要10天、15天完成,如果兩隊從同一位置開始,沿相反的方向同時施工2天后,因甲隊另有任務(wù),余下的工程由乙隊單獨施工,還要多少天完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知坐標(biāo)平面內(nèi)的三個點A1,3),B3,1),O0,0),

1)請畫出把△ABO向下平移5個單位后得到的△A1B1O1的圖形;

2)請畫出將△ABO繞點O順時針旋轉(zhuǎn)90°后得到的△A2B2O2,并寫出點A的對應(yīng)點A2的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果m<n<0,那么下列式子中錯誤的是(   )

A. m-9<n-9 B. -m>-n C. < D. >1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段,點是線段的中點,先按要求畫圖形,再解決問題.

1)延長線段至點,使;延長線段至點,使;(尺規(guī)作圖,保留作圖痕跡)

2)求線段的長度;

3)若點是線段的中點,求線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

18000

第二周

4

10

31000

(1)求A,B兩種型號的凈水器的銷售單價;

(2)若電器公司準(zhǔn)備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?

(3)在(2)的條件下,公司銷售完這30臺凈水器能否實現(xiàn)利潤為12800元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達(dá)某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時)后,到達(dá)離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.

(1)活動中心與小宇家相距 千米,小宇在活動中心活動時間為 小時,他從活動中心返家時,步行用了 小時;

(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);

(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案