【題目】如圖:已知AEBF,AE=BF,AC、D、B在同一直線上,要使△ADE≌△BCF,可添加的一個(gè)條件可以是____________________(寫(xiě)一個(gè)即可).

【答案】AD=BCBD=AC,∠E=F,∠ADE=BCFDECF.

【解析】

AEBF得到∠A=B,再加AE=BF,滿足一邊一角兩個(gè)條件,可再添加邊為AD=BC,或者是另兩組角,即可判定全等.

∵AE∥BF,

∴∠A=∠B,

又∵AE=BF,

∴添加AD=BCBD=AC,利用SAS證明△ADE≌△BCF;

添加∠E=F,利用AAS證明ADE≌△BCF;

添加∠ADE=BCF(或DECF),利用AAS證明ADE≌△BCF;

故答案為:AD=BCBD=AC,∠E=F,∠ADE=BCFDECF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個(gè)以點(diǎn)D為頂點(diǎn)的45°角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與ACBC的延長(zhǎng)線相交,交點(diǎn)分別為點(diǎn)E,F,DFAC交于點(diǎn)M,DEBC交于點(diǎn)N

1)如圖1,若CE=CF,求證:DE=DF;

2)如圖2,在∠EDF繞點(diǎn)D旋轉(zhuǎn)的過(guò)程中:

探究三條線段AB,CE,CF之間的數(shù)量關(guān)系,并說(shuō)明理由;

CE=4,CF=2,求DN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)Dm,m+8)在第二象限,點(diǎn)B0,n)在y軸正半軸上,作DAx軸,垂足為A,已知OAOB的值大2,四邊形AOBD的面積為12

1)求mn的值.

2)如圖2,CAO的中點(diǎn),DCAB相交于點(diǎn)E,AFBD,垂足為F,求證:AFDE

3)如圖3,點(diǎn)G在射線AD上,且GAGB,HGB延長(zhǎng)線上一點(diǎn),作∠HANy軸于點(diǎn)N,且∠HAN=∠HBO,求NBHB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017廣東省深圳市)如圖,拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),交y軸于點(diǎn)C;

(1)求拋物線的解析式(用一般式表示);

(2)點(diǎn)Dy軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D使?若存在請(qǐng)直接給出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線交于另一點(diǎn)E,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A3,m),B﹣2,﹣3)是直線AB和某反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

1)求直線AB和反比例函數(shù)的解析式;

2)觀察圖象,直接寫(xiě)出當(dāng)x滿足什么范圍時(shí),直線AB在雙曲線的下方;

3)反比例函數(shù)的圖象上是否存在點(diǎn)C,使得△OBC的面積等于△OAB的面積?如果不存在,說(shuō)明理由;如果存在,求出滿足條件的所有點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,PO⊥AB,PE⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)C,切點(diǎn)為E,AEPO于點(diǎn)F.

(1)求證:PEF是等腰三角形;

(2)在圖中,作EH⊥AB,垂足為H,作弦BD∥PC,交EH于點(diǎn)G.若EG=5,sinC=,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的三邊分別為a、b、c,則下列條件中不能判定ABC是直角三角形的是(  )

A. b2=a2c2B. abc=12

C. C=A﹣∠BD. A:∠B:∠C=345

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》一書(shū)中,用如圖所示的三角形解釋二項(xiàng)式乘方(a+bn的展開(kāi)式的各項(xiàng)系數(shù),此三角形稱為“楊輝三角”.根據(jù)“楊輝三角”請(qǐng)計(jì)算(a+b64的展開(kāi)式中第63項(xiàng)的系數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線經(jīng)過(guò)點(diǎn)A,0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案