三邊長分別為2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?為什么?
【答案】分析:欲求證是否為直角三角形,這里給出三邊的長,只要驗證兩小邊的平方和等于最長邊的平方即可.
解答:證明:∵三邊長為2n2+2n,2n+1,2n2+2n+1(n>0),
∴(2n2+2n)2=4n4+8n3+4n2,
(2n+1)2=4n2+4n+1,
(2n2+2n+1)2=4n4+4n2+1+8n3+4n2+4n=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=(2n2+2n+1)2
故三邊長為2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是直角三角形.
點評:本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

9、三邊長分別為2n2+2n,2n+1,2n2+2n+1(n為正整數(shù))的三角形是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、三邊長分別為2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

三角形的三邊長分別為2n2+2n,2n+1,2n2+2n+1(n是自然數(shù)),這樣的三角形是


  1. A.
    銳角三角形.
  2. B.
    直角三角形.
  3. C.
    鈍角三角形.
  4. D.
    銳角三角形或直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

三邊長分別為2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?為什么?

查看答案和解析>>

同步練習冊答案