【題目】為了解學(xué)生每天的睡眠情況,某初中學(xué)校從全校 800 名學(xué)生中隨機抽取了 40 名學(xué)生,調(diào)查了他們平均每天的睡眠時間(單位: h) ,統(tǒng)計結(jié)果如下:
9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,
7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
在對這些數(shù)據(jù)整理后,繪制了如下的統(tǒng)計圖表:
睡眠時間分組統(tǒng)計表 睡眠時間分布情況
組別 | 睡眠時間分組 | 人數(shù)(頻數(shù)) |
1 | 7≤t<8 | m |
2 | 8≤t<9 | 11 |
3 | 9≤t<10 | n |
4 | 10≤t<11 | 4 |
請根據(jù)以上信息,解答下列問題:
(1) m = , n = , a = , b = ;
(2)抽取的這 40 名學(xué)生平均每天睡眠時間的中位數(shù)落在 組(填組別) ;
(3)如果按照學(xué)校要求,學(xué)生平均每天的睡眠時間應(yīng)不少于 9 h,請估計該校學(xué)生中睡眠時間符合要求的人數(shù).
【答案】(1)7,18,17.5%,45%;(2)3;(3)440人.
【解析】
(1)根據(jù)40名學(xué)生平均每天的睡眠時間即可得出結(jié)果;
(2)由中位數(shù)的定義即可得出結(jié)論;
(3)由學(xué)??cè)藬?shù)×該校學(xué)生中睡眠時間符合要求的人數(shù)所占的比例,即可得出結(jié)果.
(1)7≤t<8時,頻數(shù)為m=7;
9≤t<10時,頻數(shù)為n=18;
∴a=×100%=17.5%;b=×100%=45%;
故答案為:7,18,17.5%,45%;
(2)由統(tǒng)計表可知,抽取的這40名學(xué)生平均每天睡眠時間的中位數(shù)為第20個和第21個數(shù)據(jù)的平均數(shù),
∴落在第3組;
故答案為:3;
(3)該校學(xué)生中睡眠時間符合要求的人數(shù)為800×=440(人);
答:估計該校學(xué)生中睡眠時間符合要求的人數(shù)為440人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的圓O交BC于點D,交AC于點E,過點D作DF⊥AC于點F,交AB的延長線于點G.
(1)求證:DF是⊙O的切線;
(2)已知BD=,CF=2,求DF和BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線(k≠0)上.將正方形沿x軸負(fù)方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過A(3,0),B(1,0)兩點(如圖1),頂點為M.
(1)a、b的值;
(2)設(shè)拋物線與y軸的交點為Q(如圖1),直線y=2x+9與直線OM交于點D. 現(xiàn)將拋物線平移,保持頂點在直線OD上.當(dāng)拋物線的頂點平移到D點時,Q點移至N點,求拋物線上的兩點M、Q間所夾的曲線MQ掃過的區(qū)域的面積;
(3)設(shè)直線y=2x+9與y軸交于點C,與直線OM交于點D(如圖2).現(xiàn)將拋物線平移,保持頂點在直線OD上.若平移的拋物線與射線CD(含端點C)沒有公共點時,試探求其頂點的橫坐標(biāo)h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,直線l與x、y軸分別交于點A(4,0)、B(0,)兩點,∠BAO的角平分線交y軸于點D. 點C為直線l上一點,以AC為直徑的⊙G經(jīng)過點D,且與x軸交于另一點E.
(1)求證:y軸是⊙G的切線;
(2)求出⊙G的半徑r,并直接寫出點C的坐標(biāo);
(3)如圖2,若點F為⊙G上的一點,連接AF,且滿足∠FEA=45°,請求出EF的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點C在線段AB上,(點C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點P.
(觀察猜想)
①AE與BD的數(shù)量關(guān)系是 ;
②∠APD的度數(shù)為 .
(數(shù)學(xué)思考)
如圖2,當(dāng)點C在線段AB外時,(1)中的結(jié)論①、②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;
(拓展應(yīng)用)
如圖3,點E為四邊形ABCD內(nèi)一點,且滿足∠AED=∠BEC=90°,AE=DE,BE=CE,對角線AC、BD交于點P,AC=10,則四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+x+2與x軸交于點A(4,0)與y軸交于點B.點M在線段AB上,其橫坐標(biāo)為m,PM∥y軸,與拋物線交點為點P,PQ∥x軸,與拋物線交點為點Q
(1)求a的值、并寫出此拋物線頂點的坐標(biāo);
(2)求m為何值時,△PMQ為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C、D是⊙O上的四個點,AD是⊙O的直徑,過點C的切線與AB的延長線垂直于點E,連接AC、BD相交于點F.
(1)求證:AC平分∠BAD;
(2)若⊙O的半徑為,AC=6,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com