【題目】如圖①,在中,,過上一點作交于點,以為頂點,為一邊,作,另一邊交于點.
(1)求證:四邊形為平行四邊形;
(2)當(dāng)點為中點時,的形狀為 ;
(3)延長圖①中的到點使連接得到圖②,若判斷四邊形的形狀,并說明理由.
【答案】(1)證明見解析;(2)菱形;(3)四邊形是矩形,理由見解析.
【解析】
(1)根據(jù)平行線的性質(zhì)得到,根據(jù)題意得到,根據(jù)平行線的判定定理得到,根據(jù)平行四邊形的判定定理證明;
(2)根據(jù)三角形中位線定理得到,得到,根據(jù)菱形的判定定理證明;
(3)根據(jù)等腰三角形的性質(zhì)得到,根據(jù)有一個角是直角的平行四邊形是矩形證明.
(1)證明:,
,
,
,
,又,
四邊形為平行四邊形;
(2)解:的形狀為菱形,
理由如下:點為中點,
,
,點為中點,
,
,
,
平行四邊形為菱形,
故答案為:菱形;
(3)四邊形是矩形,
理由如下:由(1)得,四邊形為平行四邊形,
,,
,
,,
四邊形是平行四邊形,
,,
,
四邊形是矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點B.
(1)求a的值,并寫出拋物線的表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,
①當(dāng)點M(2,n)時,求n,并求△ABM的面積.
②當(dāng)點M的橫坐標為m,△ABM的面積為S,求S與m的函數(shù)表達式,并求出S的最大值和此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=β度,∠ABC與∠ACD的平分線交于點A1,得∠A1;∠A1BC與∠A1CD的平分線交于點A2,得∠A2,…∠A2017BC與∠A2017CD的平分線交于點A2018,得∠A2018.則∠A2018=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線m:y=x2﹣2x+2與直線l:y=x+2交于A,B(A在B的左側(cè)),且拋物線頂點為C.
(1)求A,B,C坐標;
(2)若點D為該拋物線上的一個動點,且在直線AC下方,當(dāng)以A,C,D為頂點的三角形面積最大時,求點D的坐標及此時三角形的面積.
(3)將拋物線m:y=x2﹣2x+2沿直線OC方向平移得拋物線m′,與直線l:y=x+2交于A′,B′,問在平移過程中線段A′B′的長度是否發(fā)生變化,請通過計算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示,點的坐標是(-2,2),現(xiàn)將△ABC平移,使點A對應(yīng)點為點點分別是B、C的對應(yīng)點.
(1)請畫出平移后的(不寫畫法);
(2)直接寫出點的坐標;
(3)若△ABC內(nèi)部一點P的坐標為則點P的對應(yīng)點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)請直接寫出D點的坐標.
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是BC邊的中點,將△ABE沿AE所在直線折疊得到△AGE,延長AG交CD于點F,已知CF=2,FD=1,則BC的長是( )
A.3B.2C.2D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com