【題目】如圖,以∠AOB的頂點O為圓心,適當(dāng)長為半徑畫弧,交OA于點C,交OB于點D,再分別以點C,D為圓心,大于 CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是(
A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.O,E兩點關(guān)于CD所在直線對稱
D.C,D兩點關(guān)于OE所在直線對稱

【答案】C
【解析】解:
A、連接CE、DE,根據(jù)作圖得到OC=OD、CE=DE.
∵在△EOC與△EOD中,
,
∴△EOC≌△EOD(SSS),
∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意;
B、根據(jù)作圖得到OC=OD,
∴△COD是等腰三角形,正確,不符合題意;
C、根據(jù)作圖不能得出CD平分OE,
∴CD不是OE的平分線,
∴O、E兩點關(guān)于CD所在直線不對稱,錯誤,符合題意;
D、根據(jù)作圖得到OC=OD,
又∵射線OE平分∠AOB,
∴OE是CD的垂直平分線,
∴C、D兩點關(guān)于OE所在直線對稱,正確,不符合題意;
故選C.
【考點精析】掌握軸對稱的性質(zhì)是解答本題的根本,需要知道關(guān)于某條直線對稱的兩個圖形是全等形;如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線;兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,點B在⊙O上,∠ACB=30°

(1)利用尺規(guī)作∠ABC的平分線BD,交AC于點E,交⊙O于點D,連接CD(保留作圖痕跡,不寫作法)

(2)在(1)所作的圖形中,求△ABE與△CDE的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是正方形ABCD對角線BD上一點,EM⊥BC,EN⊥CD垂足分別是求M、N

(1)求證:AE=MN;
(2)若AE=2,∠DAE=30°,求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校對學(xué)生的暑假參加志愿服務(wù)時間進(jìn)行抽樣調(diào)查,將收集的數(shù)據(jù)分成A,B,C,D,E五組進(jìn)行整理,并繪制成如下的統(tǒng)計圖表(圖中信息不完整).

請結(jié)合以上信息解答下列問題
(1)求a、m、n的值.
(2)補全“人數(shù)分組統(tǒng)計圖①中C組的人數(shù)和圖②A組和B組的比例值”.
(3)若全校學(xué)生人數(shù)為800人,請估計全校參加志愿服務(wù)時間在30≤x<40的范圍的學(xué)生人數(shù).
分組統(tǒng)計表

組別

志愿服務(wù)時間
x(時)

人數(shù)

A

0≤x<10

a

B

10≤x<20

40

C

20≤x<30

m

D

30≤x<40

n

E

x≥40

16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l上有一點O,點A、B同時從O出發(fā),在直線l上分別向左、向右作勻速運動,且A、B的速度比為1:2,設(shè)運動時間為ts.

(1)當(dāng)t=2s時,AB=12cm.此時,
①在直線l上畫出A、B兩點運動2秒時的位置,并回答點A運動的速度是cm/s; 點B運動的速度是cm/s.
②若點P為直線l上一點,且PA﹣PB=OP,求 的值;
(2)在(1)的條件下,若A、B同時按原速向左運動,再經(jīng)過幾秒,OA=2OB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由兩個長為9,寬為3的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是(
A.15
B.16
C.19
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個等腰三角形的兩條邊長分別是方程x2﹣3x+2=0的兩根,則該等腰三角形的周長是( )
A.5或4
B.4
C.5
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知1微米=107米,則25微米用科學(xué)記數(shù)法表示為(
A.0.25×105
B.25×107
C.2.5×106
D.2.5×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若順次連接四邊形ABCD各邊的中點所得四邊形是矩形,則四邊形ABCD一定滿足(
A.對角線相等
B.對角線互相平分
C.對角線互相垂直
D.對角線相等且相互平分

查看答案和解析>>

同步練習(xí)冊答案