【題目】若順次連接四邊形ABCD各邊的中點所得四邊形是矩形,則四邊形ABCD一定滿足( )
A.對角線相等
B.對角線互相平分
C.對角線互相垂直
D.對角線相等且相互平分
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D,再分別以點C,D為圓心,大于 CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是( )
A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.O,E兩點關(guān)于CD所在直線對稱
D.C,D兩點關(guān)于OE所在直線對稱
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】情境觀察:
(1)如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F. ①寫出圖1中所有的全等三角形;
②線段AF與線段CE的數(shù)量關(guān)系是 .
(2)如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E. 求證:AE=2CD.
(3)如圖3,△ABC中,∠BAC=45°,AB=BC,點D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足為E,DE與BC交于點F.求證:DF=2CE. 要求:請你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點O,與BC相交于N,連接MN,DN.請你判定四邊形BMDN是什么特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過∠AOB平分線上一點C作CD∥OB交OA于點D,E是線段OC的中點,請過點E畫直線分別交射線CD、OB于點M、N,探究線段OD、ON、DM之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB邊上的動點(不與點B重合),將△BCP沿CP所在的直線翻折,得到△B′CP,連接B′A,則下列判斷:
①當AP=BP時,AB′∥CP;
②當AP=BP時,∠B′PC=2∠B′AC
③當CP⊥AB時,AP=;
④B′A長度的最小值是1.
其中正確的判斷是 (填入正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系xOy中的位置如圖所示.(不寫解答過程,直接寫出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點A1的坐標為 ;
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標為 ;
(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長為 ;
(4)在x軸上找一點P,使PA+PB的值最小,則點P的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com