【題目】如圖,在平行四邊形中,,于點(diǎn),交于點(diǎn),若,則的大小是( )
A.B.C.D.
【答案】B
【解析】
取DF的中點(diǎn)G,連接AG,根據(jù)平行四邊形的性質(zhì)和平行線的性質(zhì)可得∠FAD=∠AEB=90°,∠CBD=∠GDA,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半可推出AB=AG=FG=DG,根據(jù)等邊對(duì)等角可得∠ABG=∠AGB,∠GAD=∠GDA,然后根據(jù)三角形的外角的性質(zhì)和已知條件即可求出∠GDA,然后根據(jù)直角三角形的兩個(gè)銳角互余即可得出結(jié)論.
解:取DF的中點(diǎn)G,連接AG,如下圖所示
∵四邊形ABCD是平行四邊形,
∴BC∥AD,∠AEB=90°
∴∠FAD=∠AEB=90°,∠CBD=∠GDA
在Rt△FAD中,DF=2AG=2FG=2GD
∵
∴AB=AG=FG=DG
∴∠ABG=∠AGB,∠GAD=∠GDA
∴∠ABG=∠AGB=∠GAD+∠GDA=2∠GDA=2∠CBD
∴∠ABC=∠ABG+∠CBD=3∠CBD=78°
∴∠CBD=26°
∴∠GDA=26°
在Rt△AFD中,∠AFD=90°-∠GDA=64°
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校藝術(shù)節(jié)計(jì)劃為學(xué)生購(gòu)買(mǎi)A、B兩種獎(jiǎng)品,已知購(gòu)買(mǎi)40件A種獎(jiǎng)品和購(gòu)買(mǎi)60件B種獎(jiǎng)品共需2600元,購(gòu)買(mǎi)35件A種獎(jiǎng)品和購(gòu)買(mǎi)70件B種獎(jiǎng)品共需2800元.
(1)求A、B兩種獎(jiǎng)品的單價(jià)各為多少元?
(2)若學(xué)校購(gòu)買(mǎi)A、B兩種獎(jiǎng)品共100件,且購(gòu)買(mǎi)這批獎(jiǎng)品的總費(fèi)用不超過(guò)2800元,求最多購(gòu)買(mǎi)B獎(jiǎng)品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】廬陽(yáng)春風(fēng)體育運(yùn)動(dòng)品商店從廠家購(gòu)進(jìn)甲,乙兩種T恤共400件,其每件的售價(jià)與進(jìn)貨量(件)之間的關(guān)系及成本如下表所示:
T恤 | 每件的售價(jià)/元 | 每件的成本/元 |
甲 | 50 | |
乙 | 60 | |
(1)當(dāng)甲種T恤進(jìn)貨250件時(shí),求兩種T恤全部售完的利潤(rùn)是多少元;
(2)若所有的T恤都能售完,求該商店獲得的總利潤(rùn)(元)與乙種T恤的進(jìn)貨量(件)之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,已知兩種T恤進(jìn)貨量都不低于100件,且所進(jìn)的T恤全部售完,該商店如何安排進(jìn)貨才能使獲得的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一張矩形紙片,長(zhǎng)15cm,寬9cm,在它的四角各剪去一個(gè)同樣的小正方形,然折疊成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒.若紙盒的底面(圖中陰影部分)面積是48cm2,求剪去的小正方形的邊長(zhǎng).設(shè)剪去的小正方形邊長(zhǎng)是xcm,根據(jù)題意可列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,經(jīng)過(guò)三角形一頂點(diǎn)和此頂點(diǎn)所對(duì)邊上的任意一點(diǎn)的直線,均能把三角形分割成兩個(gè)三角形
(1)如圖,在中,,過(guò)作一直線交于,若把分割成兩個(gè)等腰三角形,則的度數(shù)是______.
(2)已知在中,,過(guò)頂點(diǎn)和頂點(diǎn)對(duì)邊上一點(diǎn)的直線,把分割成兩個(gè)等腰三角形,則的最小度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店計(jì)劃購(gòu)進(jìn)一批、兩種型號(hào)的計(jì)算器,若購(gòu)進(jìn)型計(jì)算器10只和型計(jì)算器8只,共需要資金880元;若購(gòu)進(jìn)型計(jì)算器2只和型計(jì)算器5只,共需要資金380元.
(1)求、兩種型號(hào)的計(jì)算器每只進(jìn)價(jià)各是多少元?
(2)該商店計(jì)劃購(gòu)進(jìn)這兩種型號(hào)的計(jì)算器共50只.根據(jù)市場(chǎng)行情,銷(xiāo)售一只型計(jì)算器可獲利9元,銷(xiāo)售一只型計(jì)算器可獲利18元.該商店希望銷(xiāo)售完這50只計(jì)算器,所獲利潤(rùn)不少于購(gòu)進(jìn)總成本的25%.則該商店至少要采購(gòu)型計(jì)算器多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),已知,.
(1)求拋物線的解析式;
(2)如圖2,若點(diǎn)是直線上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)作軸的平行線交直線于點(diǎn),作于點(diǎn),當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),求的面積;
(3)若點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作,當(dāng)在運(yùn)動(dòng)過(guò)程中與直線相切時(shí),求點(diǎn)的坐標(biāo)(請(qǐng)直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A,B.
(1)求拋物線解析式;
(2)點(diǎn)C(m,0)在線段OA上(點(diǎn)C不與A,O點(diǎn)重合),CD⊥OA交AB于點(diǎn)D,交拋物線于點(diǎn)E,若DE=AD,求m的值;
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對(duì)稱軸上,在(2)的條件下,是否存在以點(diǎn)D,B,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B(12,10),過(guò)點(diǎn)B作x軸的垂線,垂足為A.作y軸的垂線,垂足為C.點(diǎn)D從O出發(fā),沿y軸正方向以每秒1個(gè)單位長(zhǎng)度運(yùn)動(dòng);點(diǎn)E從O出發(fā),沿x軸正方向以每秒3個(gè)單位長(zhǎng)度運(yùn)動(dòng);點(diǎn)F從B出發(fā),沿BA方向以每秒2個(gè)單位長(zhǎng)度運(yùn)動(dòng).當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),三點(diǎn)隨之停止運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中△ODE關(guān)于直線DE的對(duì)稱圖形是△O′DE,設(shè)運(yùn)動(dòng)時(shí)間為t.
(1)用含t的代數(shù)式分別表示點(diǎn)E和點(diǎn)F的坐標(biāo);
(2)若△ODE與以點(diǎn)A,E,F為頂點(diǎn)的三角形相似,求t的值;
(3)當(dāng)t=2時(shí),求O′點(diǎn)在坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com