【題目】某校在基地參加社會活動中,帶隊老師考問學生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留有一個寬為3米的出入口,如圖所示.如何設計才能使園地的面積最大?下面是兩位同學爭議的情境:小軍:把它圍成一個正方形,這樣的面積一定最大.小英:不對啦!面積最大的不是正方形.請根據(jù)上面信息,解決問題:

1)設米().

米(用含的代數(shù)式表示);

的取值范圍是 ;

2)請你判斷誰的說法正確,為什么?

【答案】1)①;②;(2)小英的說法正確,理由見解析

【解析】

(1)①根據(jù)題意表示出來即可;②由題意列出不等式解出即可.

(2)先用公式算出面積,再利用配方法求最值即可判斷.

1)①由題意得:.

∴答案為:.

0,解得.

.

2)小英的說法正確,理由是:

.

范圍內(nèi),

時,面積最大.

此時,而,

四邊形不是正方形.

小英的說法正確.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,點的中點,于點,連接,下列結(jié)論:

;

;

;

④若,則.

其中正確的結(jié)論是______________.(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)yx的圖象與反比例函數(shù)y的圖象交于Aa,-2),B兩點.

1)求反比例函數(shù)的表達式和點B的坐標;

2P是第一象限內(nèi)反比例函數(shù)圖象上一點,過點Py軸的平行線,交直線AB于點C,連接PO,若POC的面積為3,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知PA2,PB4,以AB為邊作等邊△ABC,使P、C落在直線AB的兩側(cè),連接PC

1)如圖,當∠APB30°時,

按要求補全圖形;ABPC的長.

2)當∠APB變化時,其它條件不變,則PC的最大值為   ,此時∠APB   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某區(qū)各街道居民積極響應“創(chuàng)文明社區(qū)”活動,據(jù)了解,某街道居民人口共有7.5萬人,街道劃分為A,B兩個社區(qū),B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍.

1)求A社區(qū)居民人口至少有多少萬人?

2)街道工作人員調(diào)查A,B兩個社區(qū)居民對“社會主義核心價值觀”知曉情況發(fā)現(xiàn):A社區(qū)有1.2萬人知曉,B社區(qū)有1萬人知曉,為了提高知曉率,街道工作人員用了兩個月的時間加強宣傳,A社區(qū)的知曉人數(shù)平均月增長率為m%,B社區(qū)的知曉人數(shù)第一個月增長了m%,第二個月增長了2m%,兩個月后,街道居民的知曉率達到76%,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,點EF分別是邊AB,BC上的動點(不與端點重合),且始終保持AEBF,連接AF,CE相交于點P過點A作直線mBC,過點C作直線nAB,直線mn相交于點D,連接PDAC于點G,在點E,F的運動過程中,若,則的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點AB之間的距離為10cm,雙翼的邊緣ACBD54cm,且與閘機側(cè)立面夾角∠PCA=∠BDQ30°.當雙翼收起時,可以通過閘機的物體的最大寬度為(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(22)、B(4,0)、C(10)

1)請直接寫出點A關于y軸對稱的點D的坐標;

2)將△ABC繞坐標原點O順時針旋轉(zhuǎn)90°得到△A1B1C1,請畫出△A1B1C1并求點A在這一旋轉(zhuǎn)中經(jīng)過的路程.

3)將△ABC以點C為位似中心,放大2倍得到△A2B2C,請寫出一個點A2的坐標并畫出△A2B2C.(所畫圖形必須在所給的網(wǎng)格內(nèi))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yx2﹣2mx+m2﹣3(m是常數(shù)).

(1)證明無論m取什么實數(shù),該拋物線與x軸都有兩個交點

(2)設拋物線的頂點為A,x軸兩個交點分別為BD,BD的右側(cè),y軸的交點為C

求證m取不同值時,△ABD都是等邊三角形;

|m|≤,m≠0,△ABC的面積是否有最大值,如果有,請求出最大值,如果沒有,請說明理由

查看答案和解析>>

同步練習冊答案