【題目】股市一周內(nèi)周六、周日兩天不開市,股民小王上周五以每股25.20元的價格買進某公司股票10000股,下表為本周內(nèi)每天該股票的漲跌情況:

星期

每股漲

跌情況

-0.1

+0.4

-0.2

-0.4

+0.5

注:表中正數(shù)表示股價比前一天上漲,負數(shù)表示股價比前一天下跌.

1)星期四收盤時,每股多少元?

2)本周內(nèi)哪一天股價最高,是多少元?

3)股民小王本周末將該股票全部售出(不記交易稅),小王在本次交易中獲利多少元?

【答案】124.90元;(2)周二,25.50元;32000元.

【解析】

1)由表格可計算出星期四收盤時每股的價錢;

2)本題需先根據(jù)表格計算本周內(nèi)每天的股價,即可得判斷;

3)先計算本周末每股的盈利,然后在乘以10000即可.

解:(1)依題意得(元

答:星期四收盤時,每股時24.90元.

2)依題意得,周一,周二,周三,周四,周五的股價分別為25.10元,25.50元,25.30元,24.90元,25.40元,

因為,

所以本周周二的股價最高,是25.50元.

3)依題意得(元

答:小王在本次交易中獲利2000元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,過點A(2,0)的直線y軸交于點B,與雙曲線交于點P,點P位于y軸左側(cè),且到y軸的距離為1,已知tan∠OAB=

(1)分別求出直線與雙曲線相應的函數(shù)表達式;

(2)觀察圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在以AB為直徑的半圓中,將弧BC沿弦BC折疊交AB于點D,若AD=5,DB=7.

(1)求BC的長;

(2)求圓心到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程(組)或不等式(組)解應用題:

1)甲工人接到240個零件的任務,工作1小時后,因要提前完成任務,調(diào)來乙和甲合作,合做了5小時完成.已知甲每小時比乙少做4個,那么甲、乙每小時各做多少個?

2)某工廠準備購進、兩種機器共20臺用于生產(chǎn)零件,經(jīng)調(diào)查2型機器和1型機器價格為18萬元,1型機器和2型機器價格為21萬元.

①求一臺型機器和一臺型機器價格分別是多少萬元?

②已知1型機器每月可加工零件400個,1型機器每月可加工零件800個,經(jīng)預算購買兩種機器的價格不超過140萬元,每月兩種機器加工零件總數(shù)不低于12400個,那么有哪幾種購買方案,哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)﹣5,|1.5|,﹣,0,3,﹣(﹣1)表示的點.

1)畫在數(shù)軸上;

2)用“<”把這些數(shù)連接起來;

3)指出:負數(shù)是   ;分數(shù)是   ;非負整數(shù)是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊥BC且AB=BC,DE⊥CD且DE=CD,請按照圖中所標注的數(shù)據(jù),計算圖中實線所圍成的圖形的面積S是( )

A. 36B. 48C. 72D. 108

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生最喜歡的球類運動情況,隨機選取該校部分學生進行調(diào)查,要求每名學生只寫一類最喜歡的球類運動.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學生中,最喜歡乒乓球的有 人,最喜歡籃球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;

(2)被調(diào)查學生的總數(shù)為 人,其中,最喜歡籃球的有 人,最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;

(3)該校共有450名學生,根據(jù)調(diào)查結(jié)果,估計該校最喜歡排球的學生數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點O為△ABC的兩條角平分線的交點,過點OODBC于點D,且OD4.若△ABC的周長是17,則△ABC的面積為( 。

A. 34B. 17C. 8.5D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON=30°,點B1在邊OM上,且OB1=2,過點B1B1A1OMON于點A1,以A1B1為邊在A1B1右側(cè)作等邊三角形A1B1C1;過點C1OM的垂線分別交OM、ON于點B2、A2,以A2B2為邊在A2B2的右側(cè)作等邊三角形A2B2C2;過點C2OM的垂線分別交OM、ON于點B3、A3,以A3B3為邊在A3B3的右側(cè)作等邊三角形A3B3C3,…;按此規(guī)律進行下去,則AnBn+1Cn的面積為__.(用含正整數(shù)n的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案