【題目】如圖,已知點O為△ABC的兩條角平分線的交點,過點OODBC于點D,且OD4.若△ABC的周長是17,則△ABC的面積為(  )

A. 34B. 17C. 8.5D. 4

【答案】A

【解析】

OEABE,OFACF,連結(jié)OA,根據(jù)角平分線的性質(zhì)得OE=OF=OD=4,然后根據(jù)三角形面積公式和SABC=SABO+SBCO+SACO進(jìn)行計算即可.

解:如圖,作OEABE,OFACF,連結(jié)OA
∵點O是∠ABC、∠ACB角平分線的交點,
OE=OD,OF=OD,即OE=OF=OD=4,
SABC=SABO+SBCO+SACO=ABOE+BCOD+ACOF
=×4×AB+BC+AC
=×4×17
=34
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,陰影部分是由5個小正方形組成的一個直角圖形,請用3種方法分別在下圖方格內(nèi)添涂黑二個小正方形,使陰影部分成為軸對稱圖形.

2)如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、B、C在小正方形的頂點上.

①在圖中畫出與△ABC關(guān)于直線l成軸對稱的△ABC

②△ABC的面積為____________;

③在直線l上找一點P,使PBPC的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】股市一周內(nèi)周六、周日兩天不開市,股民小王上周五以每股25.20元的價格買進(jìn)某公司股票10000股,下表為本周內(nèi)每天該股票的漲跌情況:

星期

每股漲

跌情況

-0.1

+0.4

-0.2

-0.4

+0.5

注:表中正數(shù)表示股價比前一天上漲,負(fù)數(shù)表示股價比前一天下跌.

1)星期四收盤時,每股多少元?

2)本周內(nèi)哪一天股價最高,是多少元?

3)股民小王本周末將該股票全部售出(不記交易稅),小王在本次交易中獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線ABx軸、y軸分別相交于點A、B,將線段AB繞點A順時針旋轉(zhuǎn)90°,得到AC,連接BC,將ABC沿射線BA平移,當(dāng)點C到達(dá)x軸時運動停止.設(shè)平移距離為m,平移后的圖形在x軸下方部分的面積為S,S關(guān)于m的函數(shù)圖象如圖2所示(其中0<m≤a,a<m≤b時,函數(shù)的解析式不同).

(1)填空:ABC的面積為

(2)求直線AB的解析式;

(3)求S關(guān)于m的解析式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結(jié)AP并延長APCDF點,連結(jié)CP并延長CPADQ點.給出以下結(jié)論:

①四邊形AECF為平行四邊形;

②∠PBA=APQ;

③△FPC為等腰三角形;

④△APB≌△EPC.

其中正確結(jié)論的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,∠ACB90°,BD是△ABC的角平分線,EAB上一點,且AEAD,連接ED,作EFBDF,連接CF.則下面的結(jié)論:

CDCF;

②∠EDF45°;

③∠BCF45°;

④若CD4AD5,則SADE10.其中正確結(jié)論的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律,觀察下面算式,解答問題.

13422

135932;

13571642

135792552;

(1)請猜想:1357919________

(2)請猜想:13579(2n1)________;

(3)試計算:101103197199.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m,求這塊草坪的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的部分圖象如圖所示,則關(guān)于的一元二次方程的解為

查看答案和解析>>

同步練習(xí)冊答案