【題目】如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到.
(1)觀察猜想
小明發(fā)現(xiàn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),如圖1,他發(fā)現(xiàn)的面積與的面積之間有一定的數(shù)量關(guān)系,請(qǐng)直接寫出這個(gè)關(guān)系:______;
(2)類比探究
如圖2,是的中點(diǎn),請(qǐng)寫出與之間的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;
(3)解決問(wèn)題
如圖3,,,,,在線段上,交于,若,,請(qǐng)直接寫出的長(zhǎng).
【答案】(1);(2)BE=2AM,,理由見(jiàn)解析;(3)
【解析】
(1)結(jié)論:S1=S2.如圖1中,作EH⊥BA交BA的延長(zhǎng)線于H,CM⊥AD于M,利用三角形的面積公式證明即可;
(2)如圖2中,延長(zhǎng)至點(diǎn)使得,連接,易證,求出,然后證明,得到,,延長(zhǎng)交于點(diǎn),求出即可;
(3)作DT∥AC交AH的延長(zhǎng)線于T.連接DE.證明△BAC≌△DAE(SAS),推出∠ADE=∠ABC=45°,BC=DE=2,推出∠BDE=∠BDA+∠ADE=90°,推出,再證明AH=BE即可解決問(wèn)題.
解:(1)結(jié)論:S1=S2.
理由:如圖1中,作EH⊥BA交BA的延長(zhǎng)線于H,CM⊥AD于M.
由題意CA=AE,AD=AB,∠CAE=∠DAF=90°,
∴∠EAH=∠CAM,
∴sin∠CAM=sin∠EAH,
∵S1=ADCM=ADACsin∠CAM,S2=ABEH=ABAEsin∠EAH,
∴S1=S2.
故答案為S1=S2;
(2)結(jié)論:BE=2AM,;
理由:延長(zhǎng)至點(diǎn)使得,連接,
易證,
∴且,
∴,
又∵,
∴,
∵,
∴,
又∵,
∴,
又∵,
∴,
∴,,
延長(zhǎng)交于點(diǎn),
在中,,
∴,
∴;
(3)作DT∥AC交AH的延長(zhǎng)線于T,連接DE.
∵AB=AD,AC=AE,∠BAD=∠CAE=90°,
∴∠ABD=∠ADB=45°,∠BAC=∠DAE,
∴△BAC≌△DAE(SAS),
∴∠ADE=∠ABC=45°,BC=DE=2,
∴∠BDE=∠BDA+∠ADE=90°,
∴BE=,
∵∠BAD=∠CAE=90°,
∴∠CAD+∠BAE=180°,
∵AC∥DT,
∴∠CAD+∠ADT=180°,
∴∠BAE=∠ADT,
∵AH⊥BE,
∴∠DAT+∠BAT=90°,∠ABE+∠BAT=90°,
∴∠DAT=∠ABE,
∵AB=AD,
∴△ABE≌△DAT(ASA),
∴BE=AT,AE=DT,
∵AC=AE,
∴AC=DT,
∵∠CAH=∠T,∠AHC=∠DHT,
∴△AHC≌△THD(AAS),
∴AH=HT,
∴AH=BE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游客乘坐“金碧皇宮號(hào)游船”在長(zhǎng)江和嘉陵江的交匯處A點(diǎn),測(cè)得來(lái)福土最高樓頂點(diǎn)F的仰角為45°,此時(shí)他頭項(xiàng)正上方146米的點(diǎn)B處有架航拍無(wú)人機(jī)測(cè)得來(lái)福士最高樓頂點(diǎn)F的仰角為31°,游船朝碼頭方向行駛120米到達(dá)碼頭C,沿坡度i=1:2的斜坡CD走到點(diǎn)D,再向前走160米到達(dá)來(lái)福士樓底E,則來(lái)福士最高樓EF的高度約為( 。ńY(jié)果精確到0.1,參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)
A.301.3米B.322.5米C.350.2米D.418.5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是一塊邊長(zhǎng)為8米的正方形苗圃,園林部門擬將其改造為矩形AEFG的形狀,其中點(diǎn)E在AB邊上,點(diǎn)G在A的延長(zhǎng)線上,DG=2BE,設(shè)BE的長(zhǎng)為x米,改造后苗圃AEFG的面積為y平方米.
(1)求y與x之間的函數(shù)關(guān)系式(不需寫自變量的取值范圍);
(2)若改造后的矩形苗圃AEFG的面積與原正方形苗圃ABCD的面積相等,此時(shí)BE的長(zhǎng)為 米.
(3)當(dāng)x為何值時(shí)改造后的矩形苗圃AEFG的最大面積?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,將點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為.的平分線交于,且.若點(diǎn)落在矩形的邊上,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB為直徑,F是半圓弧AB的中點(diǎn),E是弧BF上一點(diǎn),直線AE與過(guò)點(diǎn)B的切線相交于點(diǎn)C,連接EF.
(1)若EF=AB,求∠ACB的度數(shù);
(2)若⊙O的半徑為3,BC=2,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“美”、“麗”、“光”、“明”的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個(gè)球,求摸出球上的漢字剛好是“美”的概率;
(2)甲從中任取一球,不放回,再?gòu)闹腥稳∫磺,?qǐng)用樹(shù)狀圖或列表法,求甲取出的兩個(gè)球上的漢字恰能組成“美麗”或“光明”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,點(diǎn)P為BC邊上一動(dòng)點(diǎn),若△PAB與△PCD是相似三角形,則BP的長(zhǎng)為 _____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的度數(shù)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com