【題目】小林準備進行如下操作實驗:把一根長為的鐵絲剪成兩段,并把每一段各圍成一個正方形.
(1)若設其中的一個正方形邊長為,則另一個正方形邊長為_____;
(2)要使這兩個正方形的面積之和等于,兩段長分別是多少?
(3)若要使得這兩個正方形的面積之和最小,兩段長分別是多少?
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標中,點O是坐標原點,一次函數y1=kx+b與反比例函數y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點.
(1)求直線AB的解析式及△OAB面積;
(2)根據圖象寫出當y1<y2時,x的取值范圍;
(3)若點P在x軸上,求PA+PB的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,點D是BC邊上的點,CD=1,將△ABC沿直線AD翻折,使點C落在AB邊上的點E處,若點P是直線AD上的動點,則△PEB的周長的最小值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,點M,N分別在射線OA,OB上(都不與點O重合),且∠MPN與∠AOB互補.若∠MPN繞著點P轉動,那么以下四個結論:①PM=PN恒成立;②MN的長不變;③OM+ON的值不變;④四邊形PMON的面積不變.其中正確的為_____.(填番號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線經過點A(﹣1,0)和B(2,0),直線y=x+m經過點A和拋物線的另一個交點為C.
(1)求拋物線的解析式.
(2)動點P、Q從點A出發(fā),分別沿線段AC和射線AO運動,運動的速度分別是每秒4個單位長度和3個單位長度.連接PQ,設運動時間為t秒,△APQ的面積為s,求s與t的函數關系式.(不寫t的取值范圍)
(3)在(2)的條件下,線段PQ交拋物線于點D,點E在線段AP上,且AE=AQ,連接ED,過點D作DF⊥DE交x軸于點F,當DF=DE時,求點F的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.
(1)求拋物線的表達式;
(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.
①求S關于t的函數表達式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉60°得到線段OP,連接AP,反比例函數(k≠0)的圖象經過P,B兩點,則k的值為______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=與x軸交于A、B兩點,△ABC為等邊三角形,∠COD=60°,且OD=OC.
(1)A點坐標為 ,B點坐標為 ;
(2)求證:點D在拋物線上;
(3)點M在拋物線的對稱軸上,點N在拋物線上,若以M、N、O、D為頂點的四邊形為平行四邊形,請直接寫出點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com