【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,點(diǎn)D是BC邊上的點(diǎn),CD=1,將△ABC沿直線AD翻折,使點(diǎn)C落在AB邊上的點(diǎn)E處,若點(diǎn)P是直線AD上的動(dòng)點(diǎn),則△PEB的周長(zhǎng)的最小值是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】區(qū)教育局為了解本區(qū)八年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽查了區(qū)內(nèi)部分八年級(jí)學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)檢測(cè)了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖(如圖)請(qǐng)根據(jù)圖中提供的信息,回答下列問題:
(1)a=_____,請(qǐng)補(bǔ)全條形圖;
(2)求出在這次抽樣調(diào)查樣本數(shù)據(jù)中,眾數(shù)和中位數(shù);
(3)如果該區(qū)共有八年級(jí)學(xué)生2000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于7天”的學(xué)生人數(shù)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的一元二次方程.
(1)求證:方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程有一根小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD邊長(zhǎng)為1.則重疊部分四邊形EMCN的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.
(1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1;
(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質(zhì)時(shí)如下結(jié)論:①這個(gè)函數(shù)圖象的頂點(diǎn)始終在直線y=-x+1上;②存在一個(gè)m的值,使得函數(shù)圖象的頂點(diǎn)與軸的兩個(gè)交點(diǎn)構(gòu)成等腰直角三角形;③點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在函數(shù)圖象上,若x1<x2,x1+x2>2m,則y1<y2;④當(dāng)-1<x<2時(shí),y隨x的增大而增大,則m的取值范圍為m≥2其中錯(cuò)誤結(jié)論的序號(hào)是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個(gè)數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn):把一根長(zhǎng)為的鐵絲剪成兩段,并把每一段各圍成一個(gè)正方形.
(1)若設(shè)其中的一個(gè)正方形邊長(zhǎng)為,則另一個(gè)正方形邊長(zhǎng)為_____;
(2)要使這兩個(gè)正方形的面積之和等于,兩段長(zhǎng)分別是多少?
(3)若要使得這兩個(gè)正方形的面積之和最小,兩段長(zhǎng)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2﹣2x+k的部分圖象如圖所示,則關(guān)于x的一元二次方程x2﹣2x+k=0的解一個(gè)為x1=3,則方程x2﹣2x+k=0另一個(gè)解x2=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com