【題目】如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.
(1)直接寫出直線L的解析式;
(2)設OP=t,△OPQ的面積為S,求S關于t的函數(shù)關系式;并求出當0<t<2時,S的最大值;
(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.
【答案】(1)y=1﹣x;(2),S有最大值;(3)存在點C(1,1).
【解析】
(1)已知直線L過A,B兩點,可將兩點的坐標代入直線的解析式中,用待定系數(shù)法求出直線L的解析式;
(2)求三角形OPQ的面積,就需知道底邊OP和高QM的長,已知了OP為t,關鍵是求出QM的長.已知了QM垂直平分OP,那么OM=t,然后要分情況討論:①當OM<OB時,即0<t<2時,BM=OB﹣OM,然后在等腰直角三角形BQM中,即可得出QM=BM,由此可根據(jù)三角形的面積公式得出S與t的函數(shù)關系式;②當OM>OB時,即當t≥2時,BM=OM﹣OB,然后根據(jù)①的方法即可得出S與t的函數(shù)關系式,然后可根據(jù)0<t<2時的函數(shù)的性質(zhì)求出S的最大值;
(3)如果存在這樣的點C,那么CQ=QP=OQ,因此C,O就關于直線BL對稱,因此C的坐標應該是(1,1).那么只需證明CQ⊥PQ即可.分三種情況進行討論:①當Q在線段AB上(Q,B不重合),且P在線段OB上時.要證∠CQP=90°,那么在四邊形CQPB中,就需先證出∠QCB與∠QPB互補,由于∠QPB與∠QPO互補,而∠QPO=∠QOP,因此只需證∠QCB=∠QOB即可,根據(jù)折疊的性質(zhì),這兩個角相等,由此可得證;②當Q在線段AB上,P在OB的延長線上時,根據(jù)①已得出∠QPB=∠QCB,那么這兩個角都加上一個相等的對頂角后即可得出∠CQP=∠CBP=90度;③當Q與B重合時,很顯然,三角形CQP應該是個等腰直角三角形.綜上所述即可得出符合條件C點的坐標.
(1)y=1﹣x;
(2)∵OP=t,
∴Q點的橫坐標為t,
①當,即0<t<2時,QM=1-t,
∴S△OPQ=t(1﹣t),
②當t≥2時,QM=|1﹣t|=t﹣1,
∴S△OPQ=t(t﹣1),
∴
當0<t<1,即0<t<2時,S=t(1﹣t)=﹣(t﹣1)2+,
∴當t=1時,S有最大值;
(3)由OA=OB=1,故△OAB是等腰直角三角形,
若在L1上存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形,
則PQ=QC,
所以OQ=QC,又L1∥x軸,則C,O兩點關于直線L對稱,
所以AC=OA=1,得C(1,1).下面證∠PQC=90度.連CB,則四邊形OACB是正方形.
①當點P在線段OB上,Q在線段AB上(Q與B、C不重合)時,如圖﹣1,
由對稱性,得∠BCQ=∠QOP,∠QPO=∠QOP,
∴∠QPB+∠QCB=∠QPB+∠QPO=180°,
∴∠PQC=360°﹣(∠QPB+∠QCB+∠PBC)=90度;
②當點P在線段OB的延長線上,Q在線段AB上時,如圖﹣2,如圖﹣3
∵∠QPB=∠QCB,∠1=∠2,
∴∠PQC=∠PBC=90度;
③當點Q與點B重合時,顯然∠PQC=90度,
綜合①②③,∠PQC=90度,
∴在L1上存在點C(1,1),使得△CPQ是以Q為直角頂點的等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,E為對角線BD上一個動點,以E為直角頂點,AE為直角邊作等腰Rt△AEF,A、E、F按逆時針排列.當點E從點B運動到點D時,點F的運動路徑長為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空,如圖所示.
(1)∵ (已知),∴__________________ (______).
(2)∵ (已知),∴__________________(______).
(3)∵_________(已知),∴(______).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于的方程有兩個不相等的實數(shù)根.
求實數(shù)的取值范圍;
是否存在實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術平方根?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=6與雙曲線y=(k≠0,且>0)交點A,點A的橫坐標為2.
(1)求點A的坐標及雙曲線的解析式;
(2)點B是雙曲線上的點,且點B的縱坐標是6,連接OB,AB.求三角形△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個長為8分米,寬為5分米,高為7分米的長方體上,截去一個長為6分米,寬為5分米,深為2分米的長方體后,得到一個如圖所示的幾何體.一只螞蟻要從該幾何體的頂點A處,沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是 分米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電腦公司經(jīng)銷甲種型號電腦,每臺售價4000元.為了增加收入,電腦公司決定再經(jīng)銷乙種型號電腦.已知甲種電腦每臺進價為3500元,乙種電腦每臺進價為3000元,公司預計用不多于5萬元且不少于4.8萬元的資金購進這兩種電腦共15臺.
(1)有幾種進貨方案?
(2)如果乙種電腦每臺售價為3800元,為打開乙種電腦的銷路,公司決定每售出一臺乙種電腦,返還顧客現(xiàn)金a元,要使(2)中所有方案獲利相同,a值應是多少? 若考慮投入成本最低,則應選擇哪種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在射線DB、DC、BC上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=( 。
A. 30°B. 35°C. 15°D. 25°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com