【題目】計算: + ﹣|2sin45°﹣1|.
【答案】解:原式=2 ﹣3﹣(2× ﹣1)
=2 ﹣3﹣ +1
= ﹣2
【解析】根據(jù)特殊角的三角函數(shù)值和任何不為零的數(shù)的 -n(n為正整數(shù))次冪等于這個數(shù)n次冪的倒數(shù),由=2,再合并同類二次根式即可.
【考點精析】本題主要考查了整數(shù)指數(shù)冪的運(yùn)算性質(zhì)和特殊角的三角函數(shù)值的相關(guān)知識點,需要掌握aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“雙11”期間,某個體戶在淘寶網(wǎng)上購買某品牌A、B兩款羽絨服來銷售,若購買3件A,4件B需支付2400元,若購買2件A,2件B,則需支付1400元.
(1)求A、B兩款羽絨服在網(wǎng)上的售價分別是多少元?
(2)若個體戶從淘寶網(wǎng)上購買A、B兩款羽絨服各10件,均按每件600元進(jìn)行零售,銷售一段時間后,把剩下的羽絨服全部6折銷售完,若總獲利不低于3800元,求個體戶讓利銷售的羽絨服最多是多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)某體育用品專賣店銷售7個籃球和9個排球的總利潤為355元,銷售10個籃球和20個排球的總利潤為650元.
(1)求每個籃球和每個排球的銷售利潤;
(2)已知每個籃球的進(jìn)價為200元,每個排球的進(jìn)價為160元,若該專賣店計劃用不超過17400元購進(jìn)籃球和排球共100個,且要求籃球數(shù)量不少于排球數(shù)量的一半,請你為專賣店設(shè)計符合要求的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛.現(xiàn)在需要調(diào)往A縣10輛,需要調(diào)往B縣8輛,已知從甲倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為40元和80元;從乙倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為30元和50元.
(1)設(shè)乙倉庫調(diào)往A縣農(nóng)用車x輛,先填好下表,再寫出總運(yùn)費y關(guān)于x的函數(shù)關(guān)系式;
(2)若要求總運(yùn)費不超過900元,問共有幾種調(diào)運(yùn)方案?
(3)求出總運(yùn)費最低的調(diào)運(yùn)方案,最低運(yùn)費是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點的坐標(biāo)分別為,將線段直接平移到,使點移至點的位置,點移至點的位置,設(shè)平移過程中線段掃過的面積為,
(1)如圖1,若點的坐標(biāo)是,則點的坐標(biāo)為_____________,請畫出平移后的線段;
(2)如圖2,若點的坐標(biāo)是,請畫出平移后的線段,則的值為_____________;
(3)若,且點在坐標(biāo)軸上,請直接寫出所有滿足條件的點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高足球基本功,甲、乙、丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練,球從一個人腳下隨機(jī)傳到另一個人腳下,且每位傳球人傳球給其余兩人的機(jī)會是均等的,由甲開始傳球,共傳三次.
(1)請用樹狀圖列舉出三次傳球的所有可能情況;
(2)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的學(xué)習(xí)材料(研學(xué)問題),嘗試解決問題:
(a)某學(xué)習(xí)小組在學(xué)習(xí)時遇到如下問題:如圖①,在Rt△ABC中,∠C=90°,D為邊BC上一點,DA=DB,E為AD延長線上一點,∠AEB=120°,猜想BC、EA、EB的數(shù)量關(guān)系,并證明結(jié)論.大家經(jīng)探究發(fā)現(xiàn):過點B作BF⊥AE交AE的延長線于F,如圖②所示,構(gòu)造全等三角形使問題容易求解,請寫出解答過程.
(b)參考上述思考問題的方法,解答下列問題:
如圖③,等腰△ABC中,AB=AC,H為AC上一點,在BC的延長線上順次取點E、F,在CB的延長線上取點BD,使EF=DB,過點E作EG∥AC交DH的延長線于點G,連接AF,若∠HDF+∠F=∠BAC.
(1)探究∠BAF與∠CHG的數(shù)量關(guān)系;
(2)請在圖中找出一條和線段AF相等的線段,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com