【題目】解方程
(1)=x﹣2;
(2)=2
【答案】(1)x=3;(2)x=1
【解析】
(1)依次去分母,去括號,移項,合并同類項,系數(shù)化為1,即可得到答案,
(2)先把方程進行整理,然后去分母,去括號,移項,合并同類項,系數(shù)化為1,即可得到答案.
(1)去分母得:2(2x﹣1)﹣(x+1)=6(x﹣2),
去括號得:4x﹣2﹣x﹣1=6x﹣12,
移項得:4x﹣x﹣6x=﹣12+2+1,
合并同類項得:﹣3x=﹣9,
系數(shù)化為1得:x=3,
(2)原方程可整理得:,
去分母得:5(10x+10)﹣2(10x+30)=20,
去括號得:50x+50﹣20x﹣60=20,
移項得:50x﹣20x=20+60﹣50,
合并同類項得:30x=30,
系數(shù)化為1得:x=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,從邊長為a的正方形紙片中減去一個邊長為b的小正方形,再沿著線段AB剪開,把剪成的兩張紙拼成如圖2的等腰梯形(其面積= ).
(1)設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2,請直接用含a、b的式子表示S1和S2;
(2)請寫出上述過程所揭示的乘法公式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點的坐標(biāo)為,點的坐標(biāo)為,將線段向右平移個單位長度得到線段(點和點分別是點和點的對應(yīng)點),連接、,點是線段的中點.
備用圖
(1)求點的坐標(biāo);
(2)若長方形以每秒個單位長度的速度向正下方運動,(點、、、、分別是點、、、、的對應(yīng)點),當(dāng)與軸重合時停止運動,連接、,設(shè)運動時間為妙,請用含的式子表示三角形的面積(不要求寫出的取值范圍);
(3)在(2)的條件下,連接、,問是否存在某一時刻,使三角形的面積等于三角形的面積?若存在,請求出值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點,點P到⊙O的距離SP的定義如下:若點P與圓心O重合,則SP為⊙O的半徑長;若點P與圓心O不重合,作射線OP交⊙O于點A,則SP為線段AP的長度.
圖1為點P在⊙O外的情形示意圖.
(1)若點B(1,0),C(1,1),D(0, ),則SB=;SC=;SD=;
(2)若直線y=x+b上存在點M,使得SM=2,求b的取值范圍;
(3)已知點P,Q在x軸上,R為線段PQ上任意一點.若線段PQ上存在一點T,滿足T在⊙O內(nèi)且ST≥SR , 直接寫出滿足條件的線段PQ長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(6,3)、B(6,0)在直角坐標(biāo)系內(nèi).以原點O為位似中心,相似比為 ,在第一象限內(nèi)把線段AB縮小后得到線段CD,那么點C的坐標(biāo)為( )
A.(3,1)
B.(2,0)
C.(3,3)
D.(2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y= 的圖象交于點A(﹣1,n).
(1)求反比例函數(shù)y= 的解析式;
(2)若P是坐標(biāo)軸上一點,且滿足PA=OA,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:
如果y′= ,那么稱點Q為點P的“關(guān)聯(lián)點”.
例如:點(5,6)的“關(guān)聯(lián)點”為點(5,6),點(﹣5,6)的“關(guān)聯(lián)點”
為點(﹣5,﹣6).
(1)①點(2,1)的“關(guān)聯(lián)點”為;②如果點A(3,﹣1),B(﹣1,3)的“關(guān)聯(lián)點”中有一個在函數(shù) 的圖象上,那么這個點是(填“點A”或“點B”).
(2)①如果點M*(﹣1,﹣2)是一次函數(shù)y=x+3圖象上點M的“關(guān)聯(lián)點”,
那么點M的坐標(biāo)為;②如果點N*(m+1,2)是一次函數(shù)y=x+3圖象上點N的“關(guān)聯(lián)點”,求點N的坐標(biāo) .
(3)如果點P在函數(shù)y=﹣x2+4(﹣2<x≤a)的圖象上,其“關(guān)聯(lián)點”Q的縱坐標(biāo)
y′的取值范圍是﹣4<y′≤4,那么實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定個人發(fā)表文章、出版圖書所得稿費的納稅計算方法是:
①稿費不高于800元的不納稅;
②稿費高于800元,而低于4000元的應(yīng)繳納超過800元的那部分稿費的14%的稅;
③稿費為4000元或高于4000元的應(yīng)繳納全部稿費的11%的稅.
試根據(jù)上述納稅的計算方法作答:
(1)若王老師獲得的稿費為2400元,則應(yīng)納稅 元,若王老師獲得的稿費為4000元,則應(yīng)納稅 元;
(2)若王老師獲稿費后納稅420元,求這筆稿費是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com