如圖,已知拋物線與x軸交于A(1,0),B(-3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為P,連接AC.
(1)求此拋物線的解析式;
(2)拋物線對(duì)稱軸上是否存在一點(diǎn)M,使得S△MAP=2S△ACP?若存在,求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
分析:(1)設(shè)拋物線的解析式為y=a(x+3)(x-1),再把C(0,3)代入求出a的值即可;
(2)根據(jù)(1)中拋物線的解析式求出求出拋物線的對(duì)稱軸方程及頂點(diǎn)坐標(biāo),設(shè)出M點(diǎn)的坐標(biāo),利用待定系數(shù)法求出直線AP的解析式,求出E點(diǎn)坐標(biāo),故可得出△ACP的面積,進(jìn)而可得出M點(diǎn)的坐標(biāo).
解答:解:(1)∵拋物線與x軸交于A(1,0),B(-3,0)兩點(diǎn),
∴設(shè)拋物線的解析式為y=a(x+3)(x-1),
∵點(diǎn)C(0,3),
∴-3a=3,解得a=-1,
∴拋物線的解析式為y=-(x+3)(x-1),即y=-x2-2x+3;

(2)∵拋物線的解析式為y=-x2-2x+3;
∴其對(duì)稱軸x=-1,頂點(diǎn)P的坐標(biāo)為(-1,4)
∵點(diǎn)M在拋物線的對(duì)稱軸上,
∴設(shè)M(-1,m),
∵A(1,0),P(-1,4),
∴設(shè)過點(diǎn)A、P的直線解析式為y=kx+b(k≠0),
k+b=0
-k+b=4
,解得
k=-2
b=2
,
∴直線AP的解析式為y=-2x+2,
∴E(0,2),
∴S△ACP=S△ACE+S△PEC=
1
2
CE•1+
1
2
CE•1=
1
2
×1×1+
1
2
×1×1=1,
∵S△MAP=2S△ACP,
1
2
MP×2=2,解得MP=2,
當(dāng)點(diǎn)M在P點(diǎn)上方時(shí),m-4=2,解得m=6,
∴此時(shí)M(-1,6);
當(dāng)點(diǎn)M在P點(diǎn)下方時(shí),4-m=2,解得m=2,
∴此時(shí)M(-1,2),
綜上所述,M1(-1,6),M2(-1,2).
點(diǎn)評(píng):本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求一次函數(shù)及二次函數(shù)的解析式、三角形的面積公式等知識(shí),難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)點(diǎn)M是直線CD上的一動(dòng)點(diǎn),BM交拋物線于N,是否存在點(diǎn)N是線段BM的中點(diǎn),如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-1,0),與y軸交于點(diǎn)C(0,3),且對(duì)稱軸方程為x=1
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)拋物線的頂點(diǎn)為D,在其對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)若點(diǎn)M是拋物線上一點(diǎn),以B、C、D、M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點(diǎn)A(-1,0),E(3,0),與y軸交于點(diǎn)B,且該精英家教網(wǎng)函數(shù)的最大值是4.
(1)拋物線的頂點(diǎn)坐標(biāo)是(
 
,
 
);
(2)求該拋物線的解析式和B點(diǎn)的坐標(biāo);
(3)設(shè)拋物線頂點(diǎn)是D,求四邊形AEDB的面積;
(4)若拋物線y=mx2+nx+p與上圖中的拋物線關(guān)于x軸對(duì)稱,請(qǐng)直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個(gè)交點(diǎn)A(1,0),對(duì)稱軸是x=-1,則該拋物線與x軸的另一交點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,在坐標(biāo)平面內(nèi)找一點(diǎn)G,使以點(diǎn)G、F、C為頂點(diǎn)的三角形與△COE相似,請(qǐng)直接寫出符合要求的,并在第一象限的點(diǎn)G的坐標(biāo);
(3)將拋物線沿其對(duì)稱軸平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長度?

查看答案和解析>>

同步練習(xí)冊(cè)答案