精英家教網 > 初中數學 > 題目詳情
如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標;
(2)設直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,在坐標平面內找一點G,使以點G、F、C為頂點的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點G的坐標;
(3)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?
分析:(1)設拋物線解析式為y=a(x+2)(x-4),把C的坐標代入即可求出a的值,再化成頂點式即可;
(2)求出E點坐標,過C作CG∥x軸交BF于G,根據C的坐標求出G的坐標;當是(4,4)時兩三角形全等即相似,當是(8,8)時符合相似三角形的判定,即兩三角形相似.綜合上述共有3個點;
(3)拋物線向上平移,可設解析式為y=-x2+2x+8+m,把x=4或-8代入即可列出不等式,即可求出答案.
解答:解:(1)設拋物線解析式為y=a(x+2)(x-4),
把C(0,8)代入得a=-1.
∴y=-x2+2x+8=-(x-1)2+9,
頂點D(1,9);

(2)∵C(0,8),D(1,9);
代入直線解析式y=kx+b,
b=8
k+b=9
,
解得:
k=1
b=8
,
∴y=x+8,
∴E點坐標為:(-8,0),
∵B(4,0),
∴x=4時,y=4+8=12,
∴F點坐標為:(4,12),
∴EO=8,
如圖1,作CG∥x軸交BF于G,
∵CG∥EO,
∴△FCG∽△CEO,
∵EO=CO,
∴CG=FG,
∴G(4,8),
如圖2,當G點坐標為(4,4)時,兩三角形全等即相似,
如圖3,當G點坐標為(8,8)時符合相似三角形的判定,
故以點G、F、C為頂點的三角形與△COE相似的第一象限的點G的坐標為:G(4,8),G(8,8),G(4,4);

(3)由上求得E(-8,0),F(4,12).
拋物線向上平移,可設解析式為y=-x2+2x+8+m(m>0).
當x=-8時,y=-72+m.
當x=4時,y=m.
∴-72+m≤0或m≤12.
∴0<m≤72.
∴向上最多可平移72個單位長.
點評:本題主要考查了二次函數圖象與系數的特征,用待定系數法求一次函數的解析式等知識點,解此題的關鍵是綜合運用性質進行計算,此題綜合性強,有一定的難度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標;
(2)設直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)點M是直線CD上的一動點,BM交拋物線于N,是否存在點N是線段BM的中點,如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知拋物線與x軸交于點A(-1,0),與y軸交于點C(0,3),且對稱軸方程為x=1
(1)求拋物線與x軸的另一個交點B的坐標;
(2)求拋物線的解析式;
(3)設拋物線的頂點為D,在其對稱軸的右側的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(4)若點M是拋物線上一點,以B、C、D、M為頂點的四邊形是直角梯形,試求出點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線與x軸交于點A(-1,0),E(3,0),與y軸交于點B,且該精英家教網函數的最大值是4.
(1)拋物線的頂點坐標是(
 
 
);
(2)求該拋物線的解析式和B點的坐標;
(3)設拋物線頂點是D,求四邊形AEDB的面積;
(4)若拋物線y=mx2+nx+p與上圖中的拋物線關于x軸對稱,請直接寫出m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個交點A(1,0),對稱軸是x=-1,則該拋物線與x軸的另一交點坐標是( 。

查看答案和解析>>

同步練習冊答案