【題目】如圖,正方形ABCD的邊長(zhǎng)為10,AG=CH=8,BG=DH=6,連接GH,則線(xiàn)段GH的長(zhǎng)為(
A.
B.2
C.
D.10﹣5

【答案】B
【解析】解:如圖,延長(zhǎng)BG交CH于點(diǎn)E,
在△ABG和△CDH中,
,
∴△ABG≌△CDH(SSS),
AG2+BG2=AB2 ,
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
,
∴△ABG≌△BCE(ASA),
∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,
∴GE=BE﹣BG=8﹣6=2,
同理可得HE=2,
在RT△GHE中,GH= = =2 ,
故選:B.
【考點(diǎn)精析】本題主要考查了勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,ABAC,點(diǎn)DBC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊ABAC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AECF;③△BDE≌△ADF;BECFEF,其中正確結(jié)論是( )

A. ①②④ B. ②③④

C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D為射線(xiàn)CB上一個(gè)動(dòng)點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,過(guò)點(diǎn)EEF∥BC,交直線(xiàn)AC于點(diǎn)F,連接CE.

(1)如圖①,若∠BAC=60°,按邊分類(lèi):△CEF ____________ 三角形;

(2)若∠BAC<60°.

①如圖②,當(dāng)點(diǎn)D在線(xiàn)段CB上移動(dòng)時(shí),判斷△CEF的形狀并證明;

②當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上移動(dòng)時(shí),△CEF是什么三角形?請(qǐng)?jiān)趫D③中畫(huà)出相應(yīng)的圖形,寫(xiě)出結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中有點(diǎn)B﹣1,0)和y軸上一動(dòng)點(diǎn)A0,a),其中a0,以A點(diǎn)為直角頂點(diǎn)在第二象限內(nèi)作等腰直角△ABC,設(shè)點(diǎn)C的坐標(biāo)為(c,d).

1)當(dāng)a=2時(shí),則C點(diǎn)的坐標(biāo)為   ,   );

2)動(dòng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,試判斷c+d的值是否發(fā)生變化?若不變,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

3)當(dāng)a=2時(shí),在坐標(biāo)平面內(nèi)是否存在一點(diǎn)P(不與點(diǎn)C重合),使△PAB與△ABC全等?若存在,直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程,計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15,那么余下的工程由甲隊(duì)單獨(dú)完成還需5

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來(lái)完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】乘法公式的探究及應(yīng)用.

(1)如圖1,可以求出陰影部分的面積是 (寫(xiě)成兩數(shù)平方差的形式);

(2)如圖2,若將陰影部分裁剪下來(lái),重新拼成一個(gè)矩形,它的寬是 ,長(zhǎng)是 ,面積是 (寫(xiě)成多項(xiàng)式乘法的形式);

(3)比較圖1、圖2陰影部分的面積,可以得到公式 ;

(4)運(yùn)用你所得到的公式,計(jì)算下列各題:

①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l1:y=kx﹣4的圖象與直線(xiàn)l2:y=x+1的圖象平行.

(1)求直線(xiàn)l1的圖象與x軸,y軸所圍成圖形的面積;

(2)求原點(diǎn)到直線(xiàn)l1的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.如圖,以等腰直角ABC 的直角邊 AC 作等邊ACD,CEAD E, BD、CE 交于點(diǎn) F.

(1)求∠DFE 的度數(shù);

(2)求證:AB=2DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本例題

已知:如圖,AD的角平分線(xiàn),,垂足分別為E、F.求證:AD垂直平分EF

小明做法

證明:因?yàn)?/span>AD的角平分線(xiàn),,所以

理由是:“角平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等”.

因?yàn)?/span>

所以AD垂直平分EF

理由是:“到線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線(xiàn)段的垂直平分線(xiàn)上”.

老師觀(guān)點(diǎn)

老師說(shuō):小明的做法是錯(cuò)誤的

請(qǐng)你解決

指出小明做法的錯(cuò)誤;

正確、完整的解決這道題.

查看答案和解析>>

同步練習(xí)冊(cè)答案