【題目】如圖,在△OAB和△OCD中,OAOBOCOD,OAOC,∠AOB=∠COD40°,連接AC,BD交于點M,連接OM.下列結論:ACBD;AMB40°;OM平分∠BOC;MO平分∠BMC.其中正確的是____________________________

【答案】①②④

【解析】

SAS證明AOC≌△BOD得出∠OCA=ODB,AC=BD,①正確;
由全等三角形的性質得出∠OAC=OBD,由三角形的外角性質得:∠AMB+OAC=AOB+OBD,得出∠AMB=AOB=40°,②正確;
OGMCG,OHMBH,如圖2所示:則∠OGC=OHD=90°,由AAS證明OCG≌△ODHAAS),得出OG=OH,由角平分線的判定方法得出MO平分∠BMC,④正確;
由∠AOB=COD,得出當∠DOM=AOM時,OM才平分∠BOC,假設∠DOM=AOM,由AOC≌△BOD得出∠COM=BOM,由MO平分∠BMC得出∠CMO=BMO,推出COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OAOC,故③錯誤;即可得出結論.

解:∵∠AOB=COD=40°,
∴∠AOB+AOD=COD+AOD
即∠AOC=BOD,
AOCBOD中,

∴△AOC≌△BODSAS),
∴∠OCA=ODB,AC=BD,①正確;
∴∠OAC=OBD,
由三角形的外角性質得:∠AMB+OAC=AOB+OBD,
∴∠AMB=AOB=40°,②正確;
OGMCG,OHMBH,如圖2所示:


則∠OGC=OHD=90°,
OCGODH中,

∴△OCG≌△ODHAAS),
OG=OH,
MO平分∠BMC,④正確;
∵∠AOB=COD
∴當∠DOM=AOM時,OM才平分∠BOC,
假設∠DOM=AOM
∵△AOC≌△BOD,
∴∠COM=BOM
MO平分∠BMC,
∴∠CMO=BMO
COMBOM中,

∴△COM≌△BOMASA),
OB=OC,
OA=OB
OA=OC
OAOC矛盾,
∴③錯誤;
正確的是①②④;

故答案為:①②④

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直角三角形斜邊上的中線把直角三角形分成的兩個三角形的關系是(  )

A. 形狀相同 B. 周長相等 C. 面積相等 D. 全等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD對角線AC上一動點,點E在射線BC上,且PBPE,連接PD,OAC中點.

(1)如圖1,當點P在線段AO上時,試猜想PEPD的數(shù)量關系和位置關系,不用說明理由;

(2)如圖2,當點P在線段OC上時,(1)中的猜想還成立嗎?請說明理由;

(3)如圖3,當點PAC的延長線上時,請你在圖3中畫出相應的圖形(尺規(guī)作圖,保留作圖痕跡,不寫作法),并判斷(1)中的猜想是否成立?若成立,請直接寫出結論;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CAAB,垂足為 AAB=24,AC=12,射線 BMAB,垂足為 B, 一動點 E A點出發(fā)以 3 厘米/秒沿射線 AN 運動,點 D 為射線 BM 上一動點, 隨著 E 點運動而運動,且始終保持 EDCB,當點 E 經過______秒時,△DEB 與△BCA 全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,ABC是等邊三角形,將直角三角板DEF如圖放置,其中∠F30°,讓ABC在直角三角板的邊EF上向右平移(點C與點F重合時停止).

1)如圖1,當點B與點E重合時,點A恰好落在直角三角板的斜邊DF上,證明:EF2BC

2)在ABC平移過程中,AB,AC分別與三角板斜邊的交點為G、H,如圖2,線段EBAH是否始終成立?如果成立,請證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年圣誕節(jié)前夕,小明、小麗兩位同學到某超市調研一種襪子的銷售情況,

這種襪子的進價為每雙 1 元,請根據(jù)小麗提供的信息解決小明提出的問題.

小麗:每雙定價 2 元,每天能賣出 500 雙,而且這種襪子的售價每上漲 0.1 元,其每天的銷售量將減少 10 雙.

小明:照你所說,如果要實現(xiàn)每天 800 元的銷售利潤,那該如何定價?別忘了,物價局有規(guī)定,售價不能超過進價的 300%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACDABC的外角,CE平分∠ACB,交ABE,CF平分∠ACD,EF//BCAC、CFM、F,EM=3,則CE2+CF2 的值為( )

A.36B.9C.6D.18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網格中,A(2,4),B(4,1)C(-3,4)

(1)平移線段AB到線段CD,使點A與點C重合,寫出點D的坐標.

(2)直接寫出線段AB平移至線段CD處所掃過的面積.

(3)平移線段AB,使其兩端點都在坐標軸上,則點A的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在如圖所示的網格中建立平面直角坐標系后,△ABC三個頂點的坐標分別為A1,1)、B4,2)、C24).

1)畫出△ABC關于y軸的對稱圖形△A1B1C1;

2)借助圖中的網格,請只用直尺(不含刻度)完成以下要求:

①在圖中找一點P,使得PABAC的距離相等,且PAPB

②在x軸上找一點Q,使得△QAB的周長最小,并求出此時點Q的坐標.

查看答案和解析>>

同步練習冊答案