在△ABC中,∠A=90°,BC=10,tan∠ABC=3:4,M是AB上的動(dòng)點(diǎn)(不與A,B重合),過(guò)M點(diǎn)作MN∥BC交AC于點(diǎn)N,以AM、AN為鄰邊作矩形AMPN,其對(duì)角線交點(diǎn)為G。直線MP、NP分別與邊BC相交于點(diǎn)E、F,設(shè)AP=x。

圖1                        圖2
(1)求AB、AC的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)P落在BC上時(shí),求x的值;
(3)當(dāng)EF=5時(shí),求x的值;
(4)在動(dòng)點(diǎn)M的運(yùn)動(dòng)過(guò)程中,記△MNP與梯形BCNM重合部分的面積為y。試求y關(guān)于x的函數(shù)表達(dá)式,并求出y的最大值。
(1)AB="8,AC=6;" (2) x=5;(3)x=2.5或7.5 (4)當(dāng)0<x≤5時(shí),;;當(dāng)5<x<10時(shí),
;

試題分析:(1)在△ABC中,∠A=90°,BC=10,tan∠ABC=3:4,而根據(jù)三角函數(shù)tan∠ABC=,令A(yù)C=3K;AB=4K;)在△ABC中由勾股定理解得K=2;所以AB=8,AC=6;
(2) 在△ABC中,∠A=90°,當(dāng)點(diǎn)P落在BC上時(shí)以AM、AN為鄰邊作矩形AMPN,那么點(diǎn)P是BC的中點(diǎn),所以AP是直角三角形斜邊上的中線,等于斜邊的一半,所以x=5;
(3) 當(dāng)EF=5時(shí);根據(jù)題意BF=CE=2.5;∵M(jìn)N//BC,NF//AB,ME//AC ∴四邊形BFNM和四邊形CEMN都是平行四邊形(兩組對(duì)邊分別平行的四邊形是平行四邊形),∴MN=BF;矩形AMPN,所以AP=MN=2.5;同理解得AP=7.5;所以x=2.5或7.5;
(4)當(dāng)0<x≤5時(shí),;
當(dāng)5<x<10時(shí),
;

點(diǎn)評(píng):本題主要考查平行四邊形的判定方法和性質(zhì),矩形的性質(zhì),對(duì)它們的熟練掌握是解本題的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中0A=2,0B=4,將△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至△OCD,若已知拋物線過(guò)點(diǎn)A、D、B.
  
(1)求此拋物線的解析式;
(2)連結(jié)DB,將△COD沿射線DB平移,速度為每秒個(gè)單位.
①經(jīng)過(guò)多少秒O點(diǎn)平移后的O′點(diǎn)落在線段AB上?
②設(shè)DO的中點(diǎn)為M,在平移的過(guò)程中,點(diǎn)M、A、B能否構(gòu)成等腰三角形?若能,求出構(gòu)成等腰三角形時(shí)M點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知二次函數(shù)中函數(shù)與自變量之間的部分對(duì)應(yīng)值如下表所示,點(diǎn)、在函數(shù)圖象上,當(dāng)時(shí),則   (填“”或“”).

 
0
1
2
3
 

 

2
3
2
 
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC= 4cm.D、E分別為邊AB、BC的中點(diǎn),連結(jié)DE.點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在線段AD上以cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M在直線AQ上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).

(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為     cm(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分的面積為S(cm2),求S與t的函數(shù)關(guān)系式.
(4)連結(jié)CD.當(dāng)點(diǎn)N與點(diǎn)D重合時(shí),有一點(diǎn)H從點(diǎn)M出發(fā),在線段MN上以2.5cm/s的速度沿M-N-M連續(xù)做往返運(yùn)動(dòng),直至點(diǎn)P與點(diǎn)E重合時(shí),點(diǎn)H停止往返運(yùn)動(dòng);當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),點(diǎn)H始終在線段MN的中點(diǎn)處.直接寫出在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中,點(diǎn)H落在線段CD上時(shí)t的值(或取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)的圖象如圖所示,試確定的符號(hào);             0,
             0.(填不等號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)已知方程x2+px+q=0(p2-4q≥0)的兩根為x1、x2,求證:x1+x2=-p,x1·x2=q.(2)已知拋物線y=x2+px+q與x軸交于點(diǎn)A、B,且過(guò)點(diǎn)(―1,―1),設(shè)線段AB的長(zhǎng)為d,當(dāng)p為何值時(shí),d2取得最小值并求出該最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用一根長(zhǎng)為8m的木條,做一個(gè)長(zhǎng)方形的窗框,若寬為xm,則該窗戶的面積y(m2)與x(m)之間的函數(shù)關(guān)系式為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若拋物線的頂點(diǎn)坐標(biāo)是(1,16),并且拋物線與軸兩交點(diǎn)間的距離為8,(1)試求該拋物線的關(guān)系式;
(2)求出這條拋物線上縱坐標(biāo)為12的點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

銷售甲、乙兩種商品所得利潤(rùn)分別為y1(萬(wàn)元)和y2(萬(wàn)元),它們與投入資金u的關(guān)系式為y1,y2u.如果將3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲商品的投資為x(萬(wàn)元).
(1)求經(jīng)營(yíng)甲、乙兩種商品的總利潤(rùn)y(萬(wàn)元)與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)設(shè)=t,試寫出y關(guān)于t的函數(shù)關(guān)系式,并求出經(jīng)營(yíng)甲、乙兩種商品各投入多少萬(wàn)元時(shí)使得總利潤(rùn)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案