(1)已知方程x2+px+q=0(p2-4q≥0)的兩根為x1、x2,求證:x1+x2=-p,x1·x2=q.(2)已知拋物線y=x2+px+q與x軸交于點A、B,且過點(―1,―1),設線段AB的長為d,當p為何值時,d2取得最小值并求出該最小值.
(1)由根與系數(shù)的關系 (2)當p=2時,d 2的最小值是4。

試題分析:(1)證明:∵a=1,b=p,c=q,p2﹣4q≥0,

(2)解:把(﹣1,﹣1)代入y=x2+px+q得p﹣q=2,即q=p﹣2。
設拋物線y=x2+px+q與x軸交于A、B的坐標分別為(x1,0)、(x2,0)。
∵d=|x1﹣x2|,
∴d2=(x1﹣x22=(x1+x22﹣4 x1•x2=p2﹣4q=p2﹣4p+8=(p﹣2)2+4。
∴當p=2時,d 2的最小值是4。
點評:本題考察拋物線,解本題要求考生掌握方程根與系數(shù)的關系,用配方法求二次函數(shù)的最值
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線與x軸交與,兩點,
(1)求該拋物線的解析式;
(2)設(1)中的拋物線與y軸交于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線軸于兩點,交軸于點,對稱軸為直線。且A、C兩點的坐標分別為,

(1)求拋物線的解析式;
(2)在對稱軸上是否存在一個點,使的周長最。舸嬖冢埱蟪鳇c的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線(b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側),與y軸的正半軸交于點C.

(1)點B的坐標為      ,點C的坐標為      (用含b的代數(shù)式表示);
(2)若b=8,請你在拋物線上找點P,使得△PAC是直角三角形?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)請你探索,在(1)的結論下,在第一象限內是否存在點Q,使得△QCO、△QOA和△QAB中的任意兩個三角形均相似(全等可看作相似的特殊情況)如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小明的爸爸下崗后,自謀出路,做起了水果生意。一天,他先去批發(fā)市場,用100元購進甲種水果,用150元購進乙種水果。乙種水果比甲種水果多10千克,乙種水果的批發(fā)價比甲種水果的批發(fā)價高0.5元。然后,他到市場零售部,都按每千克2.8元零售,結果乙種水果很快售完。甲種水果售出80%時,出現(xiàn)滯銷,他便按原零售價的5折售完剩余水果。請你幫小明爸爸算一算這天賣水果是賠還是賺?賠或賺是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖已知點A (-2,4) 和點B (1,0)都在拋物線上.

⑴求、n;
⑵向右平移上述拋物線,記平移后點A的對應點為A′,點B的對應點為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達式;
⑶記平移后拋物線的對稱軸與直線AB′ 的交點為點C,試在軸上找點D,使得以點B′、C、D為頂點的三角形與相似.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線向左平移8個單位,再向下平移9個單位后,所得拋物線關系式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠A=90°,BC=10,tan∠ABC=3:4,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N,以AM、AN為鄰邊作矩形AMPN,其對角線交點為G。直線MP、NP分別與邊BC相交于點E、F,設AP=x。

圖1                        圖2
(1)求AB、AC的長;
(2)如圖2,當點P落在BC上時,求x的值;
(3)當EF=5時,求x的值;
(4)在動點M的運動過程中,記△MNP與梯形BCNM重合部分的面積為y。試求y關于x的函數(shù)表達式,并求出y的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

函數(shù)的圖像與y軸的交點坐標是( ).
A.(2,0)B.(-2,0)C.(0,4)D.(0,-4)

查看答案和解析>>

同步練習冊答案