【題目】如圖1,在ABC中,BAC=90°,AB=AC,AE是過A的一條直線,且B,C在AE的異側(cè),BDAE于點D,CEAE于點E

(1)求證:BD=DE+CE;

(2)若直線AE繞點A旋轉(zhuǎn)到圖2位置時(BD<CE),其余條件不變,問BD與DE,CE的關(guān)系如何,請證明;

(3)若直線AE繞點A旋轉(zhuǎn)到圖3時(BD>CE),其余條件不變,BD與DE,CE的關(guān)系怎樣?請直接寫出結(jié)果,不須證明

【答案】(1)證明見解析;(2)BD=DE+CE;(3)BD=DE+CE

【解析】

試題分析:本題考查了全等三角形的判定和性質(zhì),涉及到直角三角形的性質(zhì)、余角和補角的性質(zhì)等知識點,熟練掌握全等三角形的判定方法是解題的關(guān)鍵

(1)根據(jù)已知條件易證得BAD=ACE,且根據(jù)全等三角形的判定可證明ABD≌△CAE,根據(jù)各線段的關(guān)系即可得結(jié)論

(2)BD=DE+CE根據(jù)全等三角形的判定可證明ABD≌△CAE,根據(jù)各線段的關(guān)系即可得結(jié)論

(3)同上理,BD=DE+CE仍成立

試題解析:(1)在ABD和CAE中,

∵∠CAD+BAD=90°,BAD+ABD=90°∴∠CAD=ABD

ADB=AEC=90°,AB=AC,∴△ABD≌△CAE(AAS),

BD=AE,AD=CE又AE=AD+DE,AE=DE+CE,即BD=DE+CE

(2)BD=DECE

∵∠BAC=90°,∴∠BAD+CAE=90°BDDE,∴∠BAD+ABD=90°,

∴∠ABD=CAE又AB=AC,ADB=CEA=90°,∴△ADB≌△CEABD=AE,AD=CE

DE=AD+AE,

DE=CE+BD,即 BD=DECE

(3)同理:BD=DECE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(3)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價與銷售量的相關(guān)信息如下.已知商品的進價為30元/件,設(shè)該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20

(1)求出w與x的函數(shù)關(guān)系式;

(2)問銷售該商品第幾天時,當(dāng)天的銷售利潤最大?并求出最大利潤;

(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,調(diào)查本班同學(xué)的視力;調(diào)查一批節(jié)能燈管的使用壽命;為保證“神舟9號”的成功發(fā)射,對其零部件進行檢查;對乘坐某班次客車的乘客進行安檢.其中適合采用抽樣調(diào)查的是( 。

A. B C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列檢查一個門框是否為矩形的方法中,正確的是(

A. 測量兩條對角線,是否相等

B. 測量兩條對角線,是否互相平分

C. 用曲尺測量門框的三個角,是否都是直角

D. 用曲尺測量對角線,是否互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面坐標(biāo)系內(nèi),點A位于第二象限,距離x1個單位長度,距離y4個單位長度,則點A的坐標(biāo)為( 。

A. (1,4) B. (﹣4,1) C. (﹣1,﹣4) D. (4,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進一批服裝,每件進價為200元,由于換季滯銷,商場決定將這種服裝按標(biāo)價的六折銷售,若打折后每件服裝仍能獲利20%,則該服裝標(biāo)價是( )

A. 350 B. 400 C. 450 D. 500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校藝術(shù)班同學(xué),每人都會彈鋼琴或古箏,其中會彈鋼琴的人數(shù)會比會彈古箏的人數(shù)多10人,兩種都會的有7人.設(shè)會彈古箏的有m人,則該班同學(xué)共有人(用含有m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校九年級男生“引體向上”項目的訓(xùn)練情況,隨機抽取該年級部分男生進行了一次測試,并按測試成績(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

(1)本次抽取樣本容量為 ,扇形統(tǒng)計圖中A類所對的圓心角是 度;

(2)請補全統(tǒng)計圖;

(3)若該校九年級男生有300名,請估計該校九年級男生“引體向上”項目成績?yōu)镃類的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,以下各層均比上一層多一個圓圈,一共堆了

1)請用含有的式子表示出圖1中所有圓圈的個數(shù);

2)如果圖1中的圓圈共有10,我們自上往下,在每個圓圈中都按圖2的方式填上一串連續(xù)的正整數(shù)1,2,3,4 ,則最底層最右邊這個圓圈中的數(shù)是

3)我們自上往下,在每個圓圈中都按圖3的方式填上一串連續(xù)的整數(shù)1,2,23,3,3,,請求出圖3中所有圓圈中各數(shù)之和

查看答案和解析>>

同步練習(xí)冊答案