【題目】如圖,將平行四邊形ABCD折疊,使頂點D恰落在AB邊上的點M處,折痕為AN,那么下列說法不正確的是( 。

A. MNBCB. MNAMC. ANBCD. BMCN

【答案】C

【解析】

根據(jù)平行四邊形ABCD,可得∠B=D,再根據(jù)折疊可得∠D=NMA,再利用等量代換可得∠B=NMA,然后根據(jù)平行線的判定方法可得MNBC;首先證明四邊形AMND是平行四邊形,則BM=CNAD=BC,再根據(jù)折疊可得AM=DA,則四邊形AMND為菱形,再根據(jù)菱形的性質(zhì)可得MN=AM.由以上可做出選擇.

解:∵四邊形ABCD是平行四邊形,
∴∠B=D,
∵根據(jù)折疊可得∠D=NMA,
∴∠B=NMA
MNBC;故A正確;
∵四邊形ABCD是平行四邊形,
DNAM,ADBC,
MNBC
ADMN,
∴四邊形AMND是平行四邊形,
BM=CNAD=BC,
根據(jù)折疊可得AM=DA
∴四邊形AMND為菱形,
MN=AM;故B、D正確;
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解決下列問題:

材料一:對非負實數(shù)x“四舍五入到個位的值記為,即:當n為非負整數(shù)時,如果,則;反之,當n為非負整數(shù)時,如果;則,例如:,,

材料二:平面直角坐標系中任意兩點,我們把叫做兩點間的折線距離,并規(guī)定是一定點,是直線上的一動點,我們把的最小值叫做到直線的折線距離,例如:若,

如果,寫出實數(shù)x的取值范圍;已知點,點,且,求a的值.

m為滿足的最大值,求點到直線的折線距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠BCD=90°,BC=DC,延長AD到E,使DE=AB.

(1)求證:∠ABC=∠EDC;

(2)求證:△ABC≌△EDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標是(m,﹣4),連接AO,AO=5,sin∠AOC=

(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設(shè)MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在RtABC中,∠ACB90°,D、E分別是AB、AC的中點,FBC延長線上的一點,且EFDC.(1)求證:四邊形CDEF是平行四邊形;(2)若EF2cm,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空,完成下列說理過程

如圖,點AO,B在同一條直線上, OD,OE分別平分∠AOC和∠BOC

1)求∠DOE的度數(shù);

2)如果∠COD=65°,求∠AOE的度數(shù).

解:(1)如圖,因為OD是∠AOC的平分線,

所以∠COD =AOC

因為OE是∠BOC 的平分線,

所以 =BOC

所以∠DOE=COD+ =(∠AOC+BOC=AOB= °

2)由(1)可知∠BOE=COE = -∠COD= °.

所以∠AOE= -∠BOE = °

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于點Pab),點Qcd),如果abcd,那么點P與點Q就叫作等差點.例如:點P4,2),點Q(﹣1,﹣3),因421﹣(﹣3)=2,則點P與點Q就是等差點.如圖在矩形GHMN中,點H2,3),點N(﹣2,﹣3),MNy軸,HMx軸,點P是直線yx+b上的任意一點(點P不在矩形的邊上),若矩形GHMN的邊上存在兩個點與點P是等差點,則b的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線m與直線n垂直相交于O,點A在直線m上運動,點B 在直線n上運動,AC、BC分別是∠BAO和∠ABO的角平分線.

1)求∠ACB的大;

2)如圖2,若BDAOB的外角∠OBE的角平分線,BDAC相交于點D,點A、B在運動的過程中,∠ADB的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;

3)如圖3,過C作直線與AB交于F,且滿足∠AGO-∠BCF=45°,求證:CFOB

查看答案和解析>>

同步練習(xí)冊答案