已知關(guān)于x一元二次方程有兩個不相等的實數(shù)根
(1)求k取值范圍;
(2)當(dāng)k最小的整數(shù)時,求拋物線的頂點坐標(biāo)以及它與x軸的交點坐標(biāo);
(3)將(2)中求得的拋物線在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象.請你畫出這個新圖象,并求出新圖象與直線有三個不同公共點時m值.
(1)k>-1;(2)(1,-4);(-1,0),(3,0);(3)畫圖見解析,1或

試題分析:(1)根據(jù)一元二次方程有兩個不相等的實數(shù)根,可知根的判別式△>0,即可求出k的取值范圍.
(2)根據(jù)k的取值范圍可得當(dāng)k=0時,為k最小的整數(shù),進(jìn)而可求出頂點坐標(biāo)以及它與x軸的交點坐標(biāo).
(3)由(2)畫出此函數(shù)圖象后,可發(fā)現(xiàn),若直線與新函數(shù)有3個交點,可以有兩種情況:
①直線經(jīng)過原二次函數(shù)與x軸的交點A(即左邊的交點),可將A點坐標(biāo)代入直線的解析式中,即可求出m的值;
②原二次函數(shù)圖象x軸以下部分翻折后,所得部分圖象仍是二次函數(shù),該二次函數(shù)與原函數(shù)開口方向相反、對稱軸相同、與x軸的交點坐標(biāo)相同,可據(jù)此判斷出該函數(shù)的解析式,若直線與新函數(shù)圖象有三個交點,那么當(dāng)直線與該二次函數(shù)只有一個交點時,恰好滿足這一條件,那么聯(lián)立直線與該二次函數(shù)的解析式,可化為一個關(guān)于x的一元二次方程,那么該方程的判別式△=0,根據(jù)這一條件可確定m的取值.
試題解析:(1)由題意,得,
∴k>-1,
∴k的取值范圍為k>-1.
(2)∵k>-1,且k取最小的整數(shù),∴k=0.
.
則拋物線的頂點坐標(biāo)為(1,-4).
的圖象與x軸相交,
,∴解得:x=-1或3.
∴拋物線與x軸相交于A(-1,0),B(3,0);
(3)翻折后所得新圖象如圖所示.

平移直線y=x+m知:直線位于l1和l2時,它與新圖象有三個不同的公共點.
①當(dāng)直線位于l1時,此時l1過點A(-1,0),
∴0=-1+m,即m=1.                   
②當(dāng)直線位于l2時,此時l2與函數(shù)的圖象有一個公共點,
∴方程x+m=-x2+2x+3,即x2-x-3+m=0有兩個相等實根.
∴△=1-4(m-3)=0,即m=
當(dāng)m=時,x1=x2=滿足-1≤x≤3,
由①②知m=1或m=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=2x2+bx+1(b為常數(shù)),當(dāng)b取不同的值時,其圖象構(gòu)成一個“拋物線系”,圖中的實線型拋物線分別是b取三個不同的值時二次函數(shù)的圖象,它們的頂點在一條拋物線上(圖中虛線型拋物線),這條拋物線的解析式是(  )
A.y=-2x2+1B.y=-
1
2
x2+1
C.y=-4x2+1D.y=-
1
4
x2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,邊長為4的正方形ABCD中,點E在AB邊上(不與點A,B重合),點F在BC邊上(不與點B,C重合).
第一次操作:將線段EF繞點F順時針旋轉(zhuǎn),當(dāng)點E落在正方形上時,記為點G;
第二次操作:將線段FG繞點G順時針旋轉(zhuǎn),當(dāng)點F落在正方形上時,記為點H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為   ,求此時線段EF的長;
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請判斷四邊形EFGH的形狀為   ,此時AE與BF的數(shù)量關(guān)系是   ;
②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請直接寫出其邊長;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線經(jīng)過點(0,),(3,4).
(1)求拋物線的表達(dá)式及對稱軸;
(2)設(shè)點關(guān)于原點的對稱點為,點是拋物線對稱軸上一動點,記拋物線在之間的部分為圖象(包含,兩點).若直線與圖象有公共點,結(jié)合函數(shù)圖像,求點縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中結(jié)論正確有(      )個。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線軸交于點A,B,與y軸交于點C,其中點B的坐標(biāo)為.
(1)求拋物線對應(yīng)的函數(shù)表達(dá)式;]
(2)將(1)中的拋物線沿對稱軸向上平移,使其頂點M落在線段BC上,記該拋物線為G,求拋物線G所對應(yīng)的函數(shù)表達(dá)式;
(3)將線段BC平移得到線段(B的對應(yīng)點為,C的對應(yīng)點為),使其經(jīng)過(2)中所得拋物線G的頂點M,且與拋物線G另有一個交點N,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)(k是實數(shù)).
教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.
學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動一員,又補充一些結(jié)論,并從中選擇如下四條:
①存在函數(shù),其圖像經(jīng)過(1,0)點;
②函數(shù)圖像與坐標(biāo)軸總有三個不同的交點;
③當(dāng)時,不是y隨x的增大而增大就是y隨x的增大而減。
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù);
教師:請你分別判斷四條結(jié)論的真假,并給出理由,最后簡單寫出解決問題時所用的數(shù)學(xué)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把拋物線y=﹣2x2先向右平移1個單位長度,再向上平移2個單位長度后,所得函數(shù)的表達(dá)式為( 。
A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2
C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,若|ax2+bx+c|=k(k≠0)有兩個不相等的實數(shù)根,則k的取值范圍是(     )
A.k<-3B.k>-3C.k<3D.k>3

查看答案和解析>>

同步練習(xí)冊答案