【題目】為更好的治理水質(zhì),保護(hù)環(huán)境,市治污辦事處預(yù)購買10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中價(jià)格及污水處理量如下表:
A型 | B型 | |
價(jià)格(萬元) | a | b |
處理污水量(噸/月) | 240 | 200 |
詢問商家得知:購買一臺(tái)A型設(shè)備比購買一臺(tái)B型設(shè)備多2萬元,購買2臺(tái)A型設(shè)備比購買3臺(tái)B型設(shè)備少6萬元,根據(jù)以上條件.
(1)求a、b的值;
(2)市污水處理辦公室由于資金缺乏,購買污水處理設(shè)備的資金最多105萬元,你認(rèn)為該有幾種購買方案?
(3)在(2)的情況下,若每月污水處理量要求不低于2040噸,為節(jié)約資金,請(qǐng)你幫污水處理辦事處選取一種最省錢的方案?
【答案】(1);(2)有三種購買方案:①A型設(shè)備0臺(tái),B型設(shè)備10臺(tái);②A型設(shè)備1臺(tái),B型設(shè)備9臺(tái);③A型設(shè)備2臺(tái),B型設(shè)備8臺(tái).(3)為了節(jié)約資金,應(yīng)選購A型設(shè)備1臺(tái),B型設(shè)備9臺(tái).
【解析】
(1)因?yàn)橘徺I一臺(tái)A型設(shè)備比購買一臺(tái)B型設(shè)備多2萬元,購買2臺(tái)A型設(shè)備比購買3臺(tái)B型設(shè)備少6萬元,所以有,解之即可;
(2)可設(shè)購買污水處理設(shè)備A型設(shè)備x臺(tái),B型設(shè)備(10-x)臺(tái),則有12x+10(10-x)≤105,解之確定x的值,即可確定方案;
(3)因?yàn)槊吭乱筇幚硌鬄懞奈鬯坎坏陀?/span>2040噸,所以有240x+200(10-x)≥2040,解之即可由x的值確定方案,然后進(jìn)行比較,作出選擇.
(1)根據(jù)題意得,
解得 .
(2)設(shè)購買污水處理設(shè)備A型設(shè)備x臺(tái),B型設(shè)備(10﹣x)臺(tái),根據(jù)題意得,
12x+10(10﹣x)≤105,
∴x≤2.5,
∵x取非負(fù)整數(shù),
∴x=0,1,2,
∴10﹣x=10,9,8,
∴有三種購買方案:
①A型設(shè)備0臺(tái),B型設(shè)備10臺(tái);
②A型設(shè)備1臺(tái),B型設(shè)備9臺(tái);
③A型設(shè)備2臺(tái),B型設(shè)備8臺(tái).
(3)由題意:240x+200(10﹣x)≥2040,
∴x≥1,
又∵x≤2.5,
∴x為1,2.
當(dāng)x=1時(shí),購買資金為12×1+10×9=102(萬元),
當(dāng)x=2時(shí),購買資金為12×2+10×8=104(萬元),
∴為了節(jié)約資金,應(yīng)選購A型設(shè)備1臺(tái),B型設(shè)備9臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的分式方程=1的解是正數(shù),則m的取值范圍是_____.
【答案】m<1
【解析】試題分析:去分母得:2x+m=x-2,
解得:x=-m-2,
∵關(guān)于x的方程=1的解是正數(shù),
∴-m-2>0,
解得m<-2,
又∵x=-m-2≠2,
∴m≠-4,
∴m的取值范圍是:m<-2且m≠-4.
故答案為:m<-2且m≠-4.
點(diǎn)睛:此題主要考查了分式方程的解,要熟練掌握,解答此題的關(guān)鍵是要明確:在解方程的過程中因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根,增根是令分母等于0的值,不是原分式方程的解.
【題型】填空題
【結(jié)束】
18
【題目】若關(guān)于x的分式方程 無解,則m的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用如圖1的二維碼可以進(jìn)行身份識(shí)別.某校建立了一個(gè)身份識(shí)別系統(tǒng),圖2是某個(gè)學(xué)生的識(shí)別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉(zhuǎn)換為該生所在班級(jí)序號(hào),其序號(hào)為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號(hào)為,表示該生為5班學(xué)生.表示6班學(xué)生的識(shí)別圖案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校一間階梯教室中,第1排的座位數(shù)為a,從第2排開始,每一排都比前一排增加兩個(gè)座位.
(1)請(qǐng)你在下表的空格里填寫一個(gè)適當(dāng)?shù)氖阶樱?/span>
第1排的 座位數(shù) | 第2排的 座位數(shù) | 第3排的 座位數(shù) | 第4排的 座位數(shù) | … |
a | a+2 | a+4 | … |
(2)寫出第n排座位數(shù)的表達(dá)式;
(3)求當(dāng)a=20時(shí),第10排的座位數(shù)是多少?若這間階梯教室共有15排,那么最多可容納多少學(xué)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=1,BC= ,在AC邊上截取AD=BC,連接BD.
(1)通過計(jì)算,判斷AD2與ACCD的大小關(guān)系;
(2)求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,M是邊CD上一點(diǎn),將△ADM沿直線AM對(duì)折,得到△ANM.
(1)當(dāng)AN平分∠MAB時(shí),求DM的長(zhǎng);
(2)連接BN,當(dāng)DM=1時(shí),求△ABN的面積;
(3)當(dāng)射線BN交線段CD于點(diǎn)F時(shí),求DF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家庭過期藥品屬于“國(guó)家危險(xiǎn)廢物”,處理不當(dāng)將污染環(huán)境,危害健康.某市藥監(jiān)部門為了解市民家庭處理過期藥品的方式,決定對(duì)全市家庭作一次簡(jiǎn)單隨機(jī)抽樣調(diào)査.
(1)下列選取樣本的方法最合理的一種是 .(只需填上正確答案的序號(hào))
①在市中心某個(gè)居民區(qū)以家庭為單位隨機(jī)抽取;②在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽取;③在全市常住人口中以家庭為單位隨機(jī)抽取.
(2)本次抽樣調(diào)査發(fā)現(xiàn),接受調(diào)査的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:
①m= ,n= ;
②補(bǔ)全條形統(tǒng)計(jì)圖;
③根據(jù)調(diào)査數(shù)據(jù),你認(rèn)為該市市民家庭處理過期藥品最常見的方式是什么?
④家庭過期藥品的正確處理方式是送回收點(diǎn),若該市有180萬戶家庭,請(qǐng)估計(jì)大約有多少戶家庭處理過期藥品的方式是送回收點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD的對(duì)角線AC、BD相交于點(diǎn)O,EF過點(diǎn)O且與AB、CD分別相交于點(diǎn)E、F,連接EC.
(1)求證:OE=OF;
(2)若EF⊥AC,△BEC的周長(zhǎng)是10,求□ABCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對(duì)全校學(xué)生60秒跳繩的次數(shù)進(jìn)行了統(tǒng)計(jì),全校學(xué)生60秒跳繩的平均次數(shù)是100次,某班體育委員統(tǒng)計(jì)了全班50名學(xué)生60秒跳繩的成績(jī),列出的頻數(shù)分布直方圖如圖所示(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn)).
(1)該班學(xué)生60秒跳繩的平均次數(shù)至少是多少?是否超過全校平均次數(shù)?
(2)該班一個(gè)學(xué)生說:“我的跳繩成績(jī)?cè)谖野嗍侵形粩?shù).”請(qǐng)你給出該生跳繩成績(jī)所在的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com