16.如圖,在等腰直角△ABC中,AC=BC,AD⊥AB(點D在AB的右上方),E為AB邊上一點,且BE=4,DE=6,當CD平分∠ADE時,CE的長度為2$\sqrt{6}$.

分析 根據(jù)等腰直角三角形的性質(zhì)得∠BAC=∠ABC=45°,則∠CAD=135°,可把△CAD繞點C逆時針90°得到△CBF,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得CF=CD,∠1=∠3,∠CBF=∠CAD=135°,則可判斷點F在AB的延長線上,由于∠1=∠2,則∠2=∠3,由CF=CD得∠3+∠5=∠2+∠4,所以∠5=∠4,則FE=DE=6,根據(jù)等腰三角形性質(zhì)得CE平分∠DCF,所以∠ECF=45°,然后證明△EBC∽△ECF,于是利用相似比可計算出CE的長.

解答 解:∵在等腰直角△ABC中,AC=BC,
∴∠BAC=∠ABC=45°,
∵AD⊥AB,
∴∠DAE=90°,
∴∠CAD=135°,
把△CAD繞點C逆時針90°得到△CBF,如圖,則CF=CD,∠1=∠3,∠CBF=∠CAD=135°,
∵∠CBF+∠ABC=135°+45°=180°,
∴點F在AB的延長線上,
∵CD平分∠ADE,
∴∠1=∠2,
∴∠2=∠3,
∵CF=CD,
∴∠CFD=∠CDF,即∠3+∠5=∠2+∠4,
∴∠5=∠4,
∴FE=DE=6,
∴CF為DF的垂直平分線,
∴CE平分∠DCF,
∴∠ECF=45°,
∵∠EBC=∠ECF,∠BEC=∠CEF,
∴△EBC∽△ECF,
∴CE:EF=BE:CE,即CE:6=4:CE,
∴CE=2$\sqrt{6}$.
故答案為2$\sqrt{6}$.

點評 本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰直角三角形的性質(zhì).解決本題的關鍵是利用旋轉(zhuǎn)把CE、BE、DE放在兩個相似三角形中,從而利用相似比計算CE的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

19.已知關于x、y的方程組$\left\{\begin{array}{l}{x+y=1-a}\\{x-y=3a+5}\end{array}\right.$,給出下列結(jié)論:
①當a=1時,方程組的解也是方程x+y=2的解;
②當x=y時,a=-$\frac{5}{3}$;
③不論a取什么實數(shù),2x+y的值始終不變;
④若z=-$\frac{1}{2}$xy,則z的最小值為-1.
請判斷以上結(jié)論是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

20.一個不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中紅球3個,黃球2個,若從中任意摸出一個球,這個球是黃球的概率是為$\frac{1}{4}$,則口袋中白球的個數(shù)為3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.如圖,?ABCD中,對角線BD⊥AB,AD=5cm,CD=4cm,動點E從點C出發(fā),沿C-D方向以1cm/s的速度運動,動點F從點A出發(fā),沿A-D-B方向以2cm/s的速度運動,當其中一個動點到達終點時,另一個動點也隨之停止運動.連接EF并延長交BA的延長線于點M.設運動時間為t(s),解答下列問題:
(1)當t為何值時,四邊形AMDE是平行四邊形?
(2)設四邊形BCEF的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)直接寫出使△BEF是等腰三角形的t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.Rt△ABC中,AB=AC,M為BC邊上一點,連接AM,過點B作BN⊥AM交AC于點E,交AM于D點,在AC上截取CF=AE,連接MF并延長交BN于N點.求證:∠AMB=∠CMF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.已知,如圖,在正方形ABCD中,CE垂直于∠CAD的平分線于E,AE交DC于F,求證:CE=$\frac{1}{2}$AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.如圖,四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD,AB=5,BD=6$\sqrt{2}$,則邊BC的長為( 。
A.5$\sqrt{2}$B.6C.7D.6$\sqrt{2}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.如圖,△ABC中,A(1,0),B(4,0),C(0,2),將△AOC沿x軸的正半軸以每秒1個單位的速度向右平移得到△A′O′C′,設運動時間為t(s),△A′O′C′與△ABC重疊部分的面積為s,求s與t的函數(shù)關系式,并說明自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

6.$\frac{1}{2}$的相反數(shù)$-\frac{1}{2}$,-3的絕對值3.

查看答案和解析>>

同步練習冊答案