分析 延長AD、CE交于點M,先證明△ADF≌△CDM得AF=CM,再證明△AEC≌△AEM得EC=EM即可得到結論.
解答 證明:延長AD、CE交于點M,
∵四邊形ABCD是正方形,
∴AD=CD,∠ADC=∠CDM=90°,
∵∠EAM+∠M=90°,∠DCM+∠M=90°,
∴∠EAM=∠DCM,
在△ADF和△CDM中,
$\left\{\begin{array}{l}{∠DAF=∠DCM}\\{∠ADF=∠CDM}\\{AD=CD}\end{array}\right.$,
∴△ADF≌△CDM,
∴AF=CM,
在△AEC和△AEM中,
$\left\{\begin{array}{l}{∠EAM=∠EAC}\\{AE=AE}\\{∠AEC=∠AEM}\end{array}\right.$,
∴△AEC≌△AEM,
∴EC=EM,
∴CE=$\frac{1}{2}$AF.
點評 本題考查正方形的性質、角平分線的性質等知識,構造全等三角形是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com