【題目】已知二次函數(shù)y=ax2+bx+c(a>0)經(jīng)過點(diǎn)M(﹣1,2)和點(diǎn)N(1,﹣2),則下列說法錯(cuò)誤的是( )
A.a+c=0
B.無論a取何值,此二次函數(shù)圖象與x軸必有兩個(gè)交點(diǎn),且函數(shù)圖象截x軸所得的線段長度必大于2
C.當(dāng)函數(shù)在x<時(shí),y隨x的增大而減小
D.當(dāng)﹣1<m<n<0時(shí),m+n<
【答案】C
【解析】
根據(jù)二次函數(shù)的圖象和性質(zhì)對各項(xiàng)進(jìn)行判斷即可.
解:∵函數(shù)經(jīng)過點(diǎn)M(﹣1,2)和點(diǎn)N(1,﹣2),
∴a﹣b+c=2,a+b+c=﹣2,
∴a+c=0,b=﹣2,
∴A正確;
∵c=﹣a,b=﹣2,
∴y=ax2﹣2x﹣a,
∴△=4+4a2>0,
∴無論a為何值,函數(shù)圖象與x軸必有兩個(gè)交點(diǎn),
∵x1+x2=,x1x2=﹣1,
∴|x1﹣x2|=2>2,
∴B正確;
二次函數(shù)y=ax2+bx+c(a>0)的對稱軸x=﹣=,
當(dāng)a>0時(shí),不能判定x<時(shí),y隨x的增大而減;
∴C錯(cuò)誤;
∵﹣1<m<n<0,a>0,
∴m+n<0,>0,
∴m+n<;
∴D正確,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)在研究函數(shù)(是常數(shù))時(shí),甲發(fā)現(xiàn)當(dāng)時(shí),函數(shù)有最小值;乙發(fā)現(xiàn)是方程的一個(gè)根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當(dāng)時(shí),,已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,則該同學(xué)是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)和一次函數(shù)相交于點(diǎn),.
(1)求一次函數(shù)和反比例函數(shù)解析式;
(2)連接OA,試問在x軸上是否存在點(diǎn)P,使得為以OA為腰的等腰三角形,若存在,直接寫出滿足題意的點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游客計(jì)劃測量這座塑像的高度,(如圖1),由于游客無法直接到達(dá)塑像底部,因此該游客計(jì)劃借助坡面高度來測量塑像的高度;如圖2,在塑像旁山坡坡腳A處測得塑像頭頂C的仰角為75°,當(dāng)從A處沿坡面行走10米到達(dá)P處時(shí),測得塑像頭頂C的仰角剛好為45°,已知山坡的坡度i=1:3,且O,A,B在同一直線上,求塑像的高度.(側(cè)傾器高度忽略不計(jì),結(jié)果精確到0.1米,參考數(shù)據(jù):cos75°≈0.3,tan75°≈3.7,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過A點(diǎn)的切線與OC的延長線交于點(diǎn)D,∠B=30°,OH=5.請求出:
(1)∠AOC的度數(shù);
(2)△OAC的面積;
(3)線段AD的長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究,
(1)如圖①,在矩形ABCD中,AB=2AD,P為CD邊上的中點(diǎn),試比較∠APB和∠ADB的大小關(guān)系,并說明理由;
(2)如圖②,在正方形ABCD中,P為CD上任意一點(diǎn),試問當(dāng)P點(diǎn)位于何處時(shí)∠APB最大?并說明理由;
問題解決
(3)某兒童游樂場的平面圖如圖③所示,場所工作人員想在OD邊上點(diǎn)P處安裝監(jiān)控裝置,用來監(jiān)控OC邊上的AB段,為了讓監(jiān)控效果最佳,必須要求∠APB最大,已知:∠DOC=60°,OA=400米,AB=200米,問在OD邊上是否存在一點(diǎn)P,使得∠APB最大,若存在,請求出此時(shí)OP的長和∠APB的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年的春節(jié),對于我們來說,有些不一樣,我們不能和小伙伴相約一起玩耍,不能去游樂場放飛自我,也不能和自己的兄弟姐妹一起吃美味的大餐,這么做,是因?yàn)槲覀兠恳粋(gè)人都在面臨一個(gè)眼睛看不到的敵人,它叫病毒,殘酷的病毒會(huì)讓人患上肺炎,人與人的接觸會(huì)讓這種疾病快速地傳播開來,嚴(yán)重的還會(huì)有生命危險(xiǎn),目前我省已經(jīng)啟動(dòng)突發(fā)公共衛(wèi)生事件一級應(yīng)急響應(yīng),但我們相信,只要大家一起努力,疫情終有會(huì)被戰(zhàn)勝的一天.
在這個(gè)不能出門的悠長假期里,某小學(xué)隨機(jī)對本校部分學(xué)生進(jìn)行“假期中,我在家可以這么做!A.扎實(shí)學(xué)習(xí)、B.快樂游戲、C.經(jīng)典閱讀、D.分擔(dān)勞動(dòng)、E.樂享健康”的網(wǎng)絡(luò)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖(若每一位同學(xué)只能選擇一項(xiàng)),請根據(jù)圖中的信息,回答下列問題.
(1)這次調(diào)查的總?cè)藬?shù)是 人;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖,并說明扇形統(tǒng)計(jì)圖中E所對應(yīng)的圓心角是 度;
(3)若學(xué)校共有學(xué)生的1700人,則選擇C有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,直線L:yax10a與x軸負(fù)半軸、y軸正半軸分別交于A、B兩點(diǎn).
(1)當(dāng)OAOB時(shí),試確定直線L的解析式;
(2)在(1)的條件下,如圖②所示,設(shè)Q為AB延長線上一點(diǎn),作直線OQ,過A、B兩點(diǎn)分別作AMOQ于M,BNOQ于N,若AM8,BN6,求MN的長.
(3)當(dāng)a取不同的值時(shí),點(diǎn)B在y軸正半軸上運(yùn)動(dòng),分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第一、二象限內(nèi)作等腰直角OBF和等腰直角ABE,連接EF交y軸于P點(diǎn),如圖③,問:當(dāng)點(diǎn)B在y軸正半軸上運(yùn)動(dòng)時(shí),試猜想PB的長是否為定值,若是,請求出其值,若不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市有,兩種型號的瓶子,其容量和價(jià)格如表,小張買瓶子用來分裝15升油(瓶子都裝滿,且無剩油);當(dāng)日促銷活動(dòng):購買型瓶3個(gè)或以上,一次性返還現(xiàn)金5元,設(shè)購買型瓶(個(gè)),所需總費(fèi)用為(元),則下列說法不一定成立的是( )
型號 | A | B |
單個(gè)盒子容量(升) | 2 | 3 |
單價(jià)(元) | 5 | 6 |
A.購買型瓶的個(gè)數(shù)是為正整數(shù)時(shí)的值B.購買型瓶最多為6個(gè)
C.與之間的函數(shù)關(guān)系式為D.小張買瓶子的最少費(fèi)用是28元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com