【題目】張老師把微信運動里“好友計步榜”排名前20的好友一天行走的步數(shù)做了整理,繪制了如下不完整的統(tǒng)計圖表:
組別 | 步數(shù)分組 | 頻率 |
A | x<6000 | 0.1 |
B | 6000≤x<7000 | 0.5 |
C | 7000≤x<8000 | m |
D | x≥8000 | n |
合計 | 1 |
根據(jù)信息解答下列問題:
(1)填空:m= ,n= ;并補全條形統(tǒng)計圖;
(2)這20名朋友一天行走步數(shù)的中位數(shù)落在 組;(填組別)
(3)張老師準備隨機給排名前4名的甲、乙、丙、丁中的兩位點贊,請求出甲、乙被同時點贊的概率.
【答案】(1)0.3;0.1;條形統(tǒng)計圖如圖見解析;(2)B;(3)P(甲、乙被同時點贊)=.
【解析】
(1)用A組的頻數(shù)除以它的頻率得到調查的總人數(shù),再分別用C組、D組的頻數(shù)除以總人數(shù)得到m、n的值,然后畫條形統(tǒng)計圖;
(2)利用中位數(shù)的定義進行判斷;
(3)畫樹狀圖展示12種等可能的結果數(shù),找出甲、乙被同時點贊的結果數(shù),然后根據(jù)概率公式求解.
(1)2÷0.1=20,
m==0.3,n==0.1;
故答案為0.3;0.1;
條形統(tǒng)計圖如圖
(2)這20名朋友一天行走步數(shù)的中位數(shù)落在B組;
故答案為B;
(3)畫樹狀圖如下:
共有12種等可能的結果數(shù),其中甲、乙被同時點贊的結果數(shù)為2,
∴P(甲、乙被同時點贊)==.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,點O是上一點,以O為圓心,為半徑的圓分別交于點,點D是弧的中點.
(1)試判斷直線與的位置關系,并說明理由;
(2)若,求弧的長度(結果保留)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.
(1)求y與x之間的函數(shù)關系式;
(2)設種植的總成本為w元,
①求w與x之間的函數(shù)關系式;
②若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=|x2﹣2x﹣3|的大致圖象如圖所示,如果方程|x2﹣2x﹣3|=m(m為實數(shù))有2個不相等的實數(shù)根,則m的取值范圍是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一塊∠BAC為30°的直角三角板ABC的斜邊AB與量角器的直徑恰好重合,點E在量角器的圓弧邊緣處從A到B運動,連接CE,交直徑AB于點D.
(1)當點E在量角器上對應的刻度是90°時,則∠ADE的度數(shù)為______;
(2)若AB=8,P為CE的中點,當點E從A到B的運動過程中,點P也隨著運動,則點P所走過的路線長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明解方程=3出現(xiàn)了錯誤,解答過程如下:
方程兩邊都乘以(x-2),得1-(1-x)=3(第一步)
去括號,得1-1+x=3(第二步)
移項,合并同類項,得x=3(第三步)
檢驗,當x=3時x-2≠0(第四步)
所以x=3是原方程的解.(第五步)
(1)小明解答過程是從第____步開始出錯的,原方程化為第一步的根據(jù)是_____.
(2)請寫出此題正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線 與x軸最多有一個交點.現(xiàn)有以下四個結論:① ;②該拋物線的對稱軸在y軸的左側;③關于x的方程有實數(shù)根;④ .其中正確結論的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游樂場新推出了一個“極速飛車”的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度.其中斜坡軌道BC的坡度(或坡比)為i=1:2,BC=12米,CD=8米,∠D=36°,(其中點A、B、C、D均在同一平面內)則垂直升降電梯AB的高度約為( 。┟祝ň_到0.1米,參考數(shù)據(jù):tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)
A.5.6B.6.9C.11.4D.13.9
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com