【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)y=的圖象上.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)在x軸上是否存在一點P,使得S△AOP=S△AOB,若存在,求所有符合條件點P的坐標(biāo);若不存在,簡述你的理由.
【答案】(1)y=;(2)(﹣2,0)或(2,0)
【解析】
(1)把A的坐標(biāo)代入反比例函數(shù)的表達(dá)式,即可求出答案;
(2)求出∠A=60°,∠B=30°,求出線段OA和OB,求出△AOB的面積,根據(jù)已知S△AOPS△AOB,求出OP長,即可求出答案.
(1)把A(,1)代入反比例函數(shù)y得:k=1,所以反比例函數(shù)的表達(dá)式為y;
(2)∵A(,1),OA⊥AB,AB⊥x軸于C,∴OC,AC=1,OA2.
∵tanA,∴∠A=60°.
∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=2OC=2,∴S△AOBOAOB2×2.
∵S△AOPS△AOB,∴OP×AC.
∵AC=1,∴OP=2,∴點P的坐標(biāo)為(﹣2,0)或(2,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,四條拋物線如圖所示,其解析式中的二次項系數(shù)一定小于1的是( )
A. y1 B. y2 C. y3 D. y4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點E在對角線AC上,EC=BC=DC
(1)若∠CBD=39°,求∠BAD的度數(shù)
(2)求證:∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.
(1)判斷∠ADC是否是直角,并說明理由;
(2)試求四邊形草坪ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為2,點A的坐標(biāo)為(2,2),直線AB為⊙O的切線,B為切點.則B點的坐標(biāo)為( 。
A. (﹣,) B. (﹣,1) C. (﹣,) D. (﹣1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場“五一”期間為進(jìn)行有獎銷售活動,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,商場規(guī)定:顧客購物100元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會,當(dāng)轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)的獎品.下表是此次活動中的一組統(tǒng)計數(shù)據(jù):
轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n | 100 | 200 | 400 | 500 | 800 | 1000 |
落在“可樂”區(qū)域的次數(shù)m | 59 | 122 | a | 298 | 472 | 602 |
落在“可樂”區(qū)域的頻率 | 0.59 | 0.61 | 0.6 | 0.596 | 0.59 | b |
(1)上述表格中a= ,b= .
(2)假如你去轉(zhuǎn)動該轉(zhuǎn)盤依次,你獲得“可樂”的概率約是 (結(jié)果保留到小數(shù)點后一位).
(3)請計算轉(zhuǎn)盤中,表示“洗衣粉”區(qū)域的扇形的圓心角約是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若AF=6,EF=2,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0).下列結(jié)論:
①ac<0;②4a﹣2b+c>0;③拋物線與x軸的另一個交點是(4,0);
④點(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2.其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com